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Abstract

The ability to harness different problem-solving methods together into a coopera-

tive system has the potential for significantly improving the performance of systems for

solving NP-hard problems. The need exists for an intelligent controller that is able to

effectively combine radically different problem-solving techniques with anytime and any-

where properties into a distributed, cooperative environment. This controller requires

models of the component algorithms in conjunction with feedback from those algorithms

during run-time to manage a dynamic combination of tasks effectively. This research de-

velops a domain-independent method for creating these models as well as a model for the

controller itself. These models provide the means for the controller to select the most

appropriate algorithms, both initially and during run-time. We overcome the algorithm

selection limitations underlying the No Free Lunch Theorems by utilizing the algorithm

performance knowledge contained in the algorithm models to aid in the selection process.

This methodology is applicable to many NP-hard problems; applicability is only limited by

the availability of anytime and anywhere algorithms for that domain. We demonstrate the

capabilities of this methodology by applying it to a known NP-hard problem: uncertain

inference over Bayesian Networks. Experiments using a collection of randomly generated

networks and some common inference algorithms showed very promising results. Future

directions for this research could involve the analysis of the impact of the accuracy of the

algorithm models on the performance of the controller; the issue is whether the increased

model accuracy would cause excessive system overhead, counteracting the potential in-

crease in performance due to better algorithm selection. Research could also be done to

allow the controller to learn the performance characteristics of the algorithms, providing

another method for improving the selection accuracy.

x



Modeling Intelligent Control of

Distributed Cooperative Inferencing

I. Introduction

Uncertain inference using Bayesian Networks is NP-hard(5, 6, 31); however, it does

not change the fact that Bayesian Networks are a common way to represent uncertain

knowledge. Example uses include the commercial system Intellipath (formerly called

Pathfinder (18)), a pathological diagnosis system for tissue samples, and power genera-

tor real-time monitoring (23, 25). Uncertainty is inevitable in any real-world knowledge

base, and it makes the already difficult task of reasoning over the knowledge base even

more difficult.

This leaves a difficult task (computationally) without any general-purpose algorithm

to efficiently solve any problem instance (as discussed by Wolpert and Macready in their

No Free Lunch Theorems(38)). However, algorithms are available to solve certain specific

subclasses of these problems very efficiently. In order to make uncertain inference compu-

tationally feasible it is necessary to maximize the utility of the inferencing process by using

the method best suited to the specific network involved. Unfortunately, determining the

best algorithm to use for a given network can be just as difficult as solving the inferencing

problem itself.

With the increasing use of large networks of personal workstations, the available

computing power is no longer limited to a single computer. Harnessing the power of more

than one computer (possibly even the entire network) into a cooperative problem solving

environment would create a significant resource for working these difficult problems.

This thinking led to the creation of OVERMIND(30), a distributed architecture for

inferencing. The OVERMIND architecture allows the use of different inferencing methods

in parallel, controlled by a separate task with the capability to start and stop methods as

required. The controller evaluates the target network and selects the initial set of infer-

encing methods to use. During execution, the controller monitors the system's progress,
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taking actions as needed to increase the overall performance of the system. In this fashion,

the controller makes better use of the available resources.

For the controller to make a determination of which inferencing methods to use, a

model of both the methods' overall performance for a given class of networks and the

methods' run-time performance profiles(41) is required. The model allows the controller

to choose appropriate methods to begin the inferencing process as well as decide when

to change methods in order to converge more rapidly towards the optimal solution. The

models for the different inference algorithms are created (where possible) using analyti-

cal methods. The goal is to develop easily calculated approximate models to minimize

the computational overhead for the controller. In addition, by specifying the models at

a level of abstraction that does not require domain-specific knowledge, the distributed

control technique is generalizable to any problem domain requiring optimization, such as

scheduling or routing.

1.1 Goals and Scope

This goal of this research is to develop a domain-independent model for the operation

of an intelligent controller for a distributed cooperative system. Accomplishing this goal

requires three objectives:

1. formulation of models of the algorithms' behavior;

2. development of a method for selecting algorithm combinations given a specific prob-

lem instance;

3. development of a method for evaluating algorithm performance during run-time and

deciding which algorithm(s) should be used to continue processing.

The decision-making process involves the use of control theory, but this research is limited

to the application of existing techniques from that field.

For the purposes of demonstration, we apply the results of this research to the prob-

lem domain of uncertain inference. Achieving domain independence broadens the applica-

bility of the system into other domains. It is, however, beyond the scope of this research

to develop or implement these models for another problem domain.
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1.2 Organization

This document presents a domain independent method for performing the algorithm

analysis (Chapter V), then applies it to the algorithm selection (Chapter VI) and run-

time control (Chapter VII) processes. First, however, we provide some background on the

fundamental concepts needed for this research (Chapter II) and a more detailed description

of the research plan (Chapter III). Finally, we look at the performance of our prototype

implementation (Chapter VIII) and discuss the future of this research (Chapter IX).
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II. Background

Our research builds on two primary foundations: anytime algorithms and control theory,

each of which is a significant research area. Much work has been done in both fields, enough

to fill books of their own; the purpose of this chapter is to summarize the significant

elements of each area, reviewing the past work done in these (and related) areas and

highlighting those concepts underlying our research. In addition, we also present a brief

overview of the target problem domain: Uncertain Reasoning using Bayesian Networks.

2.1 Anytime algorithms

Anytime algorithms were first used by Dean and Boddy (2, 7) to provide a means

to balance execution time with solution quality in their work on time-dependent plan-

ning. In general, anytime algorithms are useful when problems are computationally in-

tractable; they provide a means for evaluating the progress of an algorithm during its

execution. Anytime algorithms have four characteristics which differentiate them from

ordinary algorithms (11):

Quality Measure It is possible to quantify the quality of a solution generated by the

anytime algorithm. This could be measure of the closeness of the solution to the

optimal answer, or an indicator of how complete the solution may be, or even a 'best

guess'.

Predictability Through empirical, statistical or analytical means, we can estimate the

output quality of the anytime algorithm given a particular time and input data. This

information can be used by a meta-level controller to determine the usability of a

particular algorithm.

Interruptibility An anytime algorithm produces the current status of its solution process

when interrupted or periodically throughout its execution. This status can be used

to reallocate processing to other algorithms, or simply to provide an interim solution

to the problem.

Monotonicity The quality of the output of anytime algorithms never decreases over time;

it either remains constant or increases as the algorithm is given more time to work.
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Solution Quality

time

Cost of Time -

Figure 2.1 Utility of an anytime algorithm

One place where anytime algorithms are particularly useful is where the value of

a solution involves more than just its quality level. A typical application of anytime

algorithms would be in a real-time decision-making environment. Decisions need to be

made within time constraints, so we need the best possible answer within the time available.

This implies a cost associated with time, such that the longer we wait, the more costly

the solution. This cost of time counters the increase in solution quality. If the overall

utility is a function of the solution quality and the cost of time, then a typical overall

utility performance curve would be as shown in Figure 2.1. As the figure shows, there is a

clear point t beyond which the value of the solution starts decreasing. The objective is to

determine where this deflection point in the utility curve is located in order to recognize

when the system's performance is balanced between solution quality and execution time.

Even if time is not a factor in the value of a solution, it is frequently useful to be able

to predict the improvement an algorithm will make if allowed to continue. One method

for making this prediction is to create a performance profile for the algorithm. This profile

characterizes an algorithm's performance over a set of parameters; they can be generated
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analytically or empirically. Extensive work has been done in empirically characterizing

anytime algorithms(9, 11), but little has been done through algorithm analysis.

The logical next step is to use the performance profiles to determine an optimal

stopping point. To do this in advance, use the performance profile for the algorithm and

optimize the utility of the system:

U (t) = U, M) - C t)

where t is the stopping time, UI is the intrinsic utility of the algorithm derived from

the performance profile, and C is the cost of time. While this could be estimated and

determined in advance, it depends heavily on the accuracy of the estimation methods

to get a reasonable result. Another approach is to monitor the progress of the anytime

algorithm(13); this allows us to identify more precisely the point at which the algorithm

is not cost-effective.

In cases where a single algorithm is not sufficient to solve the problem, multiple

algorithms would need to be used; Zilberstein and Russell have researched the use of

anytime algorithms as sequential components of a larger system(42). This introduces the

problem of time allocation between the components; how much time should be allocated

to the earlier components in order to optimize the results of the later components. This

process involves compiling a schedule which optimizes the complete system: in the general

case, an NP-complete problem all by itself. They have developed a method for performing

the compilation offline, with run-time monitoring to fine-tune the schedule.

2.2 Algorithm Combinations

Each algorithm uses different methods to find the optimal solution to a given problem,

much as individuals in a group of people take different approaches when given the same

problem. We have observed, as have others(19, 20) that cooperation between algorithms

can likewise result in a more rapid solution. The current issues with this approach are:

* What to share between algorithms: How much and what kind of information is needed

to effectively help the other algorithm(s) without inducing too much overhead?(19)
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" How to use the shared information: How should the algorithm utilize the information

imported from the other algorithm(s)?(19)

" When to share information: When is sharing the information beneficial, or is it better

to just let the algorithms run independently?(21)

The concept underlying information sharing between algorithms is referred to as the any-

where property(30). This property refers to an algorithm's ability to accept complete

solutions generated elsewhere and its ability to incorporate that solution into its own pro-

cessing. The methods used to accomplish the incorporation of external solutions varies

based on the methods used by the algorithm. The solution could be used to place bounds

on the problem being worked by the algorithm, it could change the direction of the pro-

cessing, or it could simply be used to affect the way the algorithm interacts with the rest

of the system.

2.3 Control Theory

Control theory in its most basic form is finding a way to provide the appropriate

control inputs to the system being controlled, or plant, such that the plant's state and

output are stable and correct. For very simple plants, a static set of equations relating

the plant's current state with the feedback to produce the control signals may be all that

is necessary. This type of system has a consistent operating environment such that a

single set of equations can handle all possible operating conditions. Many systems do

not fit this simple model - the conditions under which the controller must operate vary

significantly over the course of the system's operation. A classic example is the different

control requirements for an aircraft when flying at subsonic versus supersonic speeds. In

cases like these, an adaptive controller that can accommodate the changes in operating

conditions is needed(l).

Key to the operation of most controllers is a model of the plant. This model provides

the expected behavior of the plant so that its actual output can be evaluated. The model

provides the relationships between control signals and the plant's state. If the behavior of

the plant is well-defined, an adequate model is readily developed; many physical systems
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fall into this category. It is also possible that a given system's behavior is represented by

several distinct or overlapping models depending on external forces or control inputs - it

is the job of the adaptive controller to determine which model of behavior is appropriate.

For the controller to be effective, we need to address issues of controllability, stability

and optimality. A plant is controllable if the controller is able to provide inputs that change

the state from any given state to a state in the optimal region. This factor is important if

the controller is to be able to have any effect on the output of the plant. While stability

is not a necessary characteristic of a plant, it does make the controller easier to create; a

stable plant is one in which a small change in the inputs does not produce a large change

in the output. An optimal controller is one which generates controls to the plant which

optimize the objective(s) of the controller. Again, this not a necessity for controller design,

but provides a level of assurance that the best decisions are being made.

Another perspective on control that is relevant to this research is presented by Dean

and Wellman(8) and Hayes-Roth(14, 15, 16, 17): control is simply determining a sequence

of actions to take to cause the plant to remain in a desired state; which is the definition of

planning. The controller uses the plant model to predict what the next action needs to be

based on its determination of the current state of the plant. Additionally, the controller

can monitor the plant, using the resulting feedback to determine the appropriate course of

action.

2.4 Intelligent Control

Barbara Hayes-Roth has published numerous articles and papers on this subject; from

her 1985 foundational paper on control of blackboard architectures(14) to her introduction

to a special issue of Artificial Intelligence on intelligent control(15) in 1993. Her later

papers, including (17) and (16) focus on adaptive intelligent control of systems. The

following discusses aspects of these papers, focusing on the relevant issues to this research.

These three articles are from an extended sequence that clearly shows the progression

of Barbara Hayes-Roth's ideas from early development of an intelligent agent through her

current concept of adaptive intelligent systems specialized to fit niches in the real world.
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In the 1985 paper, the control problem is clearly stated: which of its potential actions

should an Al system perform at each point in the problem-solving process? This basic

definition is central throughout these and her other papers. The other related fundamental

concept presented in the 1985 paper that plays a constant theme in her works is the

characterization of intelligent control as a planning problem with these behavioral goals:

1. Make explicit control decisions that solve the control problem

2. Decide what actions to perform by reconciling independent decisions about what

actions are desirable and what actions are feasible

3. Adopt variable grain size control heuristics

4. Adopt control heuristics that focus on whatever action attributes are useful in the

current problem-solving situation

5. Adopt, retain and discard individual control heuristics in response to dynamic problem-

solving situations

6. Decide how to integrate multiple control heuristics of varying importance

7. Dynamically plan strategic sequences of actions

8. Reason about the relative priorities of domain and control actions

These goals are somewhat restated in her later papers to describe an adaptive intelligent

controller.

The emphasis on defining control as a planning task in the 1985 paper seemed to be

a significant occurrence at that time, although it is interesting that in her 1993 paper she

didn't think she did enough to bring it out and compare her methods with the "classical"

planning methods. This definition of control opened up possibilities to make the controller

"intelligent" by enabling it to base decisions not only on the immediate feedback from the

controlled tasks, but also on tactical and strategic policies. Different sequences of actions

could be explored and evaluated. The author obviously recognized the usefulness of this

formulation of the control problem - this theme is the basis for much of her later work.
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The 1993 paper appears (at least on the surface) to be an introduction to a larger

work rather than a work of its own. The author is very retrospective, though the summary

of the 1985 paper emphasizes the execution cycle of the controller:

1. Execute the current action

2. Determine the possible next actions

3. Evaluate and select the next action

The action could be a single activity or an entire plan itself. This structure allows the

controller to adapt the controller by placing restrictions on the possibilities for the next

action or by changing the evaluation function. The description of the control process in this

fashion is what opens this field up to the methods used in the planning area of research.

The controller's activities are mapped into a sequence of actions - but this is just what

planning is for: determining the best sequence of actions to accomplish a task.

The extension of the model to accommodate dynamic environments was definitely

the next logical step in the model's development, but even so was significant because it

gave the controller the opportunity to respond to its environment (something that was not

common at the time).

The 1995 paper emphasized the adaptive intelligent system extension of the author's

research. The focus of this papers is to define a class of intelligent agents that is more

general than the current typical agent; the goal is to broaden the scope of an agent's

capabilities from its current state (highly restricted single-function agents) to somewhere

a little closer to the unrestricted capabilities of humans.

The primary means of broadening used is changing from a single fixed mode of oper-

ation to an adaptive mode that responds to changing conditions both internal (resources,

time) and external (movement, perception) to the agent. This adaptiveness is described in

five major behaviors: perception, control, reasoning scope, reasoning methods and meta-

control. A goal for the adaptiveness is stated for each of these behaviors.

The architecture presented is intended to provide a superset of that found in simpler

agents, not a static specification of what must be implemented. It provides the framework
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and the interfaces between the components of the architecture, but does not specify what

must be in each component. This allows a system to grow into this architecture as its

capabilities are expanded. The author took this approach because while the architecture

does represent a significant step in intelligent agent development, it is an achievable step

because it focuses the research on the adaptiveness of behavior that gives humans so much

flexibility and power.

Differences The most significant difference between the intelligent control discussed

above and "traditional" AI approaches is that the intelligent controller has the capability

to respond to more than immediate (local) data when making a decision. Heuristic searches

are only capable of using local information to determine the direction of the search; an

intelligent controller could be evaluating several decisions (or even sequences of decisions)

in advance.

The other major point brought out in the 1995 paper (actually written in 1992) is

adaptability. Adaptability is what gives humans extreme flexibility and the capability to

work with very diverse problem areas. By incorporating adaptability, an agent (or other

system) can work efficiently over a broader range of problem domains utilizing the most

appropriate method for the current task.

Another point related to adaptability is the capability to respond to situations (inter-

nal and external) by dynamically determining the appropriate actions. This is definitely in

contrast to the traditional expert system mentality which operates in a static, non-real-time

environment.

2.5 Bayesian Networks

Bayesian Networks (26) are a compact way of representing probabilistic uncertainty

in automated reasoning. Such networks consist of directed acyclic graphs of nodes, each

representing a random variable (RV) with a finite domain. Edges represent direct depen-

dency, and the topology as a whole conveys independence assumptions. These allow the

joint probability distribution over all the RVs to be fully determined by providing condi-
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D E P(EIC = F) = .3

Figure 2.2 A small example Bayesian Network

tional probabilities of variable states given all their predecessor states (see Figure 2.2), as

the product of all the conditional probabilities.

One form of uncertain reasoning on Bayesian Networks is belief revision(26). Belief

revision is the process of determining the most probable instantiation of the random vari-

ables (RVs) in a network given some evidence. More formally, if W is the set of all RVs

in the given Bayesian Network and e is the evidence1 , any complete instantiations to all

the RVs in W that is consistent with e is called an explanation or interpretation of e. The

problem is to find an explanation w* such that

P(w*le) = max P(wle). (2.1)
wCW

Intuitively, we can think of the non-evidence RVs in W as possible hypotheses for e.

As an example, consider the small Bayesian Network in Figure 2.2; to the right of

the network are the associated probabilities. Given the observation that node D is true,

the goal of belief revision is to determine the most probable complete instantiation over

all the nodes in the network that is consistent with D being true and maximizes the joint

probability of that assignment to the network (Equation 2.1). This results in the solution

{A = F, B = T, C = F, D = T, E = F} which has joint probability 0.21168.

1That is, e represents a set of instantiations made on a subset of W.
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With a small network such as this, a valid solution method is to simply tabulate all

the possible values of the RVs and then calculate the probabilities manually. Once the

network gets larger and more complex, this method is obviously unacceptable and more

efficient methods must be employed.

Current methods for approximating belief revision and updating on Bayesian Net-

works include best-first search(4), linear programming(29) and genetic algorithms (28, 35).

(Exact algorithms for these problems abound and are too numerous to cite here, see

Pearl(26). However, these algorithms are, as a rule, exponential-time algorithms.) The

first two methods are deterministic: they find the optimal solution, given enough time and

resources. Solutions based on genetic algorithms are nondeterministic.

While the general problem of reasoning on Bayesian Networks is NP-hard (5, 6, 31),

each of the above algorithms exploit different characteristics of the problem domain to

reduce the time required to generate the solution. That is, each is potentially exponential,

but handles certain classes of networks efficiently. Attempts have been made to empir-

ically characterize the behavior of different algorithms(22); the results clearly show that

the amount of time required to determine the optimal solution is dependent on the char-

acteristics of the network being used. Unfortunately, empirical methods such as this suffer

from the large number of potential parameters; it is impractical to completely characterize

an algorithm's performance.

2.6 Summary

This research builds on a foundation supported by several different fields, including

anytime algorithms, control theory and uncertain inferencing. Each of these fields is quite

established, with an abundance of research documented in the literature; yet there has

been little research combining these fields. The discussion in this chapter summarized the

areas within these established fields that are relevant, and identifies areas which are open

for further research.
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III. Approach

Recalling the objectives outlined in Chapter I, this research focuses on developing the

models necessary to build a controller for a cooperative distributed system. One goal that

affects all facets of this process is that the resulting models should be domain independent.

If the model is constructed properly, the resulting system will be applicable over many

different problem domains. We use uncertain inference over Bayesian Networks as our

initial domain. This domain was chosen primarily due to the availability of local expertise

in this field and the large variety of algorithms for solving this problem. After some

exploratory experimentation, the research proceeded in five phases.

3.1 Phase 1: Architecture Development

Phase 1 established the foundation for the controller's run-time environment. The

OVERMIND architecture was created to provide the means to execute, monitor and control

the algorithms. A prototype of OVERMIND was developed using available tools.

3.2 Phase 2: Algorithm Modeling

With the development environment in place, the process of analyzing algorithms can

start and the initial problem domain of uncertain inference selected. Drawing from the

techniques developed in research on anytime algorithms, we explore the effects of sharing

the intermediate results produced by the anytime algorithms. The algorithm model is then

defined and applied to the algorithms for uncertain reasoning.

3.3 Phase 3: Initial Algorithm Selection

Phase 3 is where the algorithm analysis techniques are utilized to determine which

of the many algorithms available will most efficiently produce the best possible answer in

the time available? Finding the optimal answer to this question is almost as difficult as

actually finding the optimal solution itself; therefore, we develop and implement a selection

process based on algorithm analysis instead of empirical methods.
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3.4 Phase 4: Run-time Control

In this phase, the focus is on mapping the objectives into a control theory problem.

This makes available the existing base of control theory techniques to develop the controller.

This effort involves determining the composition of the system state and the objective

functions for the controller to use.

3.5 Phase 5: Implementation and Evaluation

Throughout the effort, extensive testing is conducted to validate the analytical re-

sults, and to gain further insight into the behavior of the system. A set of Bayesian

Networks with varying topologies, probability distributions and sizes is used to provide a

reasonably diverse data set for testing. For static selection, the objective is to be able to

select the algorithm(s) that perform the best; for run-time, the objective is to keep the

system configured so that the expected progress is high.

3.6 Summary

This research plan addresses each of the goals and objectives discussed in the previous

chapter, and lays out four distinct phases for the development of the overall control model.

The first phase necessarily creates the distributed development environment essential for

the testing of the concepts developed later. The next phase provides the analysis techniques

needed for the algorithm selection and run-time control phases. The implementation and

evaluation phase is accomplished concurrently with the other phases to provide the means

to experiment with and validate the concepts being developed.
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IV. The OVERMIND architecture

The goal for the first phase of the research is to develop an architecture that provides the

support necessary for control of a distributed system. Specifically, it needs to:

" provide the capability to start and stop tasks on remote systems;

" provide the means to communicate with tasks on remote systems;

" manage the distribution of tasks across the systems;

" easily allow new algorithms and systems to be added;

" be highly modular with minimal coupling to allow components of the architecture to

be substituted as needed.

Figure 4.1 shows the resulting architecture. Each component of the architecture is defined

by function and interface, creating a highly modular design. The major components of the

architecture are:

" Library of Tasks (LOTS) - contains a variety of algorithms suitable for solving

the problem.

" Overseer Task Manager (OVERSEER) - directs the flow of messages and in-

formation between cooperative tasks; initiates and tracks new tasks as requested by

the consumer tasks.

" Intelligent Resource Allocator (IRA) - manages and allocates available comput-

ing resources such as multi-processor systems, workstations, and personal computers.

" Consumer Tasks - interface with the outside world, translating requests and queries

into instances of the problem domain and choosing and configuring the tasks needed

to generate an appropriate response to the requester. Each consumer task is special-

ized to handle a specific type of external request.

* Producer Tasks - are the solution-generating processes in the system. Each pro-

ducer task is a product of the IRA assigning a host to an algorithm instance from

the LOTS combined with a set of parameters from a consumer task.
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As can be seen from Figure 4.1, the OVERMIND architecture is geared towards anytime

solutions, anywhere solution sharing and cooperative task management in order to provide

fast, near optimal, solutions. Its distributed nature also allows it to effectively utilize

diverse networks of computing resources. This modular approach makes it possible to

incorporate existing software packages into the OVERMIND framework. Each component

of the OVERMIND architecture is described in more detail below.

4.1 Library of Tasks

Key to the success of the OVERMIND architecture is a well-equipped Library of

Tasks (LOTS). Most intractable problems have a variety of algorithms available, and each

algorithm typically is very efficient for a subset of the entire problem domain. Unfortu-

nately, there are no algorithms which are efficient over the entire problem domain. In terms

of problem suitability, it therefore seems natural to choose the best algorithm based on

the problem instance being solved. Better yet, if a particular approach is good at starting

off a problem or solving some portion of it, we can then take its partial solution and pass

it to another approach which itself may be better on this new portion to work on. This

naturally leads us in a direction amenable to anytime and anywhere solutions. LOTS needs

to contain a variety of algorithms exhibiting both of these important properties, so that

solution sharing between methods is possible.

Up to this point, we have been using the term algorithm as if it was a single process on

a workstation. While this is an obvious first step in populating the library, there is nothing

within the OVERMIND architecture that requires this; in fact, the highly modular, loosely

coupled structure permits the library tasks to take whatever form is most beneficial. The

tasks could be single processes on a workstation, a collection of cooperating processes on

one or more workstations, or even a set of tasks running on a multi-processor system.

There are few requirements placed on the algorithms contained in the library in order

to ease the task of adding algorithms to the library as well as to reduce the impact of the

OVERMIND environment on the algorithm itself. These requirements are:

1. The algorithm must be remotely startable without any command line parameters.
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2. The algorithm will receive its data set and any parameters via inter-process commu-

nication from the consumer task (through the overseer).

3. The algorithm will send its intermediate solutions to the consumer task.

4. The algorithm will accept (but not depend on) intermediate solutions distributed by

the consumer task.

5. The algorithm should have the anytime and anywhere characteristics.

The last requirement is more of a strong recommendation: non-anytime algorithms have

been successfully incorporated into the OVERMIND system, but their utility is limited.

4;2 The Overseer

The Overseer Task Manager (OVERSEER) serves as the coordinating member of

the OVERMIND architecture. Its primary purpose is to manage the process of allocating

computing resources to algorithm instances, resulting in Producer Tasks. The OVERSEER

also serves as the message center, relaying data, status and results between the components

of the system.

The OVERSEER receives requests from Consumer Tasks to start an instance of

an algorithm, consults with the Intelligent Resource Allocator (IRA) to determine which

host or hosts will be used, then initiates the producer task, monitoring it until the task

terminates.

In its simplest form, the OVERSEER would simply provide message passing, syn-

chronization and task management services. It effectively insulates the consumer tasks

from the details of starting their producer tasks, and ensures that multiple consumer tasks

do not interfere with each other.

The OVERSEER could also play a larger role in extending the distributed environ-

ment. Under the direction of the IRA, tasks could be relocated as resource loading changes.

OVERSEER could also provide a transparent interface between dissimilar hosts, providing

whatever protocol or data translation services are needed.
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4.3 Intelligent Resource Allocator

The Intelligent Resource Allocator (IRA) serves to maximize processor use by co-

ordinating requests for resources from OVERSEER and even possibly the producer and

consumer tasks themselves. In the environment OVERMIND is intended to operate (a

heterogenous network of workstations and computers), IRA would need to be aware of the

type and configuration of each host to be used. To perform its duties efficiently, IRA also

needs to be aware of the resource requirements of the members of the LOTS: As an ex-

ample, GAs tend to be quite CPU intensive but require very little memory, the stochastic

sampling requires very little CPU, but uses quite a bit of memory. Simply identifying a

Sparc2 from a Sparc20 can improve efficiency greatly.

For the most part, we can predict relatively easily the resource requirements for our

current collection of tasks. However, once we begin introducing highly specialized tasks

and sophisticated variants of our existing tasks, we must move towards a model-theoretic

approach of resources and requirements management.

4.4 Consumer Tasks

The consumer tasks provide the external interface to the OVERMIND system. These

tasks would accept queries or other requests from the user interface or other external entity

and convert them into a Bayesian network to inference over. Each of the consumer tasks

would be specialized to respond to a particular type of request; either directly or through

the use of other consumer tasks.

Based on the request, the consumer task would determine what is needed to provide

an answer to the requester - which algorithms to use, how to construct an appropriate

problem to represent the request and what the termination conditions need to be. The

consumer task selects algorithms from the Library of Tasks (LOTS); since the algorithm

instances contained in the library could be configured through the use of parameters, it

is entirely possible that several instances of the same algorithm could be used - with the

parameters chosen to produce the desired effect. Through the OVERSEER, the required
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algorithms are invoked, and the consumer task uses the output of the algorithms to generate

the response back to the requester.

As will be discussed later, consumer tasks could also implement some form of meta-

level reasoning to dynamically allocate computing resources to tasks based on their perfor-

mance, either actual or expected. Each consumer task will essentially reason over the pool

of available computational resources, tailored to the specific problem instance it is designed

to process. A decision-theoretic framework could be used, in which a utility function over

outcomes is given.

Another possibility inherent in the structure of OVERMIND is the capability for

the consumer task to control the algorithm instances directly through the use of run-time

parameter changes. If an algorithm is not performing well, a new set of parameters could

be sent to modify its behavior and (hopefully) improve its performance.

4.5 Producer Tasks

Unlike the other components of the OVERMIND system, the producer tasks do

not exist until they are needed at run-time. Each producer task is a combination of an

algorithm instance from the LOTS, a set of parameters from a consumer task and a host

allocated by the IRA. The producer task is created dynamically by the OVERSEER.

The purpose of the producer task is to generate solutions to the problem set up by a

consumer task. Ideally, it will produce solutions incrementally in anytime fashion, as well

as accept intermediate solutions - the anywhere capability.

4.6 Prototype Implementation

Our prototype implementation of the OVERMIND system was developed using C

and C++ on a network of Sun and Linux workstations. The first two requirements from the

list at the beginning of this chapter were satisfied through the use of the Parallel Virtual

Machine (PVM) communications library(10). The PVM library provides the capability of

remote spawning and killing of tasks, as well as a set of communications primitives to allow

inter-task communications. Inherent in PVM's design is the ability to transparently inter-
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connect different hardware platforms; this was ideal for OVERMIND's target environment

of a heterogenous network of workstations.

The Library of Tasks was populated with algorithms from the initial problem do-

main of uncertain reasoning; specifically, belief revision over Bayesian Networks. Two

variants of heuristic search were used, in addition to a Genetic Algorithm and a Hybrid

Stochastic Search. One non-anytime algorithm was also used: the Barrier Computation

algorithm described in Appendix A. These algorithms were chosen because of the variety

of methodologies and the availability of existing implementations.

4.7 Summary

The OVERMIND architecture provides a flexible environment for experimenting with

distributed problem solving. Its modular design allows the independent development of the

components, as well as alternate implementations of a given component without affecting

the other components in the system. OVERMIND's capability to transparently utilize mul-

tiple hardware platforms creates an ideal test bed for experimenting with control methods

for a distributed system.
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V. Algorithm Modeling

The second phase of this research effort addresses the need to develop analytical models of

algorithms used on the target problem. Algorithm analysis is an old, established research

field; but the primary goal of traditional analysis is to determine algorithm complexity(39,

40) or to predict the algorithm's performance over the entire execution time(34, 36). This

is not what is needed for algorithm selection and control; therefore a different approach to

algorithm analysis is indicated.

We have two motivations for this analysis: algorithm selection and run-time control.

Initial algorithm selection requires the ability to predict algorithm performance over an

initial short time interval. This time interval is dependent on the time required for the

algorithms to initialize and begin producing results. Run-time control also utilizes the

expected performance of the algorithms; but in order to provide a stable system, it also

needs to address additional run-time performance factors.

Both of these uses for our analysis have a characteristic which makes our analysis

task much simpler: they both only need to evaluate the algorithm's performance potential

over a short interval. This concept is discussed further in the Chapters VI and VII. The

important point here, however, is that we can take advantage of approximations of the

algorithm's behavior to simplify the analysis and reduce the complexity of the resulting

models.

Our algorithm model consists of six factors which we have identified as being use-

ful in predicting algorithm performance: Time Complexity, Space Complexity, Resource

Cost, Restart Cost, Level of Improvement and Probability of Improvement. The model also

contains one factor (Interaction Rate), which is calculated at run-time for each algorithm.

These factors capture the expected performance of an algorithm (or combination of algo-

rithms) in a domain-independent manner: when applied to an algorithm, the factors are

calculated using characteristics of the problem domain, but the value of each factor is a

unitless scalar. It is at this point where the domain independence is established.

The rest of this chapter first describes the analysis needed to support the algorithm

model, then provides a more detailed description of the factors contained in the model.
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5.1 Analysis Methods

This section presents a method for analyzing algorithms; the goal is to produce

measures which can be used to predict the algorithm's performance. To achieve domain

independence, these measures must be scalar values: they cannot be stated in units which

are tied to a particular problem domain. For this purpose, we use the term solution

quality to refer to the output of the process, with the goal to produce the solution with the

highest quality value. How the quality of a particular solution is determined depends on

the domain: it could be related to the progress of the algorithm (how far until it is done)

or possibly a value which is calculated directly from the solution itself. The important

concept is that the solution quality can be used to compare solutions, with our goal to

obtain the highest quality solution(s).

For the purposes of predicting progress, there are two measures which capture the

potential behavior of an algorithm:

Probability of Improvement How likely is the algorithm to produce a solution with a

higher quality value than the current solution?

Level of Improvement What is the expected relative change in the output value of the

algorithm?

These concepts are developed more fully and applied to different algorithms in the domain

of uncertain reasoning in the following sections.

5.2 Algorithm Analysis

One factor needed by the run-time controller is the likelihood that an algorithm will

produce a better solution if allowed to continue from a known point. This likelihood is

called the probability of improvement:

Pimp(So) = E Pseiet(SISo)P[Q(S) > Q(So)] (5.1)
S1GS

where Si is the current anytime solution available and S is the set of all possible solu-

tions. This probability encompasses both the characteristics of the solution landscape
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Figure 5.1 The relationship between algorithm performance and probability of improve-
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(through the solution evaluation function Q(Si)) and the actions of the algorithm itself

(Pseect(Si ISo)). The probability of improvement typically has an inverse relationship with

overall algorithm performance as shown in Figure 5.1: over time, as the algorithm's solution

quality improves there is less room for improvement, and the probability of improvement

decreases. The algorithm with the highest probability of improvement is most likely to be

the algorithm with the steepest performance profile and this is the algorithm most likely

to rapidly produce a high quality solution.

The anytime nature of the algorithms allows us to treat each one as a state machine,

and its operation can be modeled as the relation that produces the next state (SI) given

the current state (So). Thus, the algorithm's execution produces a sequence of states.

In general, for each state in the sequence there is a set of possible states that can be

transitioned into. In the first term of the summation, the probability of selecting these

states is non-zero. Pimp is then the likelihood that the algorithm will select a solution

with a joint probability higher than the joint probability of the initial state So. For a

simple random search (equal probability of selection for all solutions) the probability of

selection is 1/N (N = ISI), and Pimp is simply the likelihood that a solution exists with a

higher joint probability. This model is not necessarily exact, but reflects the nature of the
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algorithm's response to interesting characteristics in the data as well as its response to the

other algorithms in the cooperative system.

The other interesting characteristic of anytime algorithms is the level of improvement

produced by the algorithm. This is the expected magnitude of the increase in solution

quality that the algorithm will make in the next increment:

i1p = (5.2)
Q(So)

With anytime algorithms the level of improvement is always greater than or equal to 1.0

because the output quality is required to be non-decreasing.

The rest of this section analyzes four different inference algorithms for performing

belief revision on Bayesian Networks. For this problem domain, the joint probability of

the solution is used as the solution quality. The algorithms considered here are an A*

search(3, 4), a simple Genetic Algorithm (GA)(24), a hybrid stochastic simulation with

local optimization and a Barrier Computation algorithm. All of these algorithms are both

anytime and anywhere except for the Barrier algorithm: it is included to demonstrate the

extent to which this analysis can apply to non-anytime algorithms.

5.2.1 A* Search. Traditional best-first algorithms with additive evaluation func-

tions, such as A*, begin with an initial state and perform heuristic (possibly exhaustive)

search for the optimal goal. The two major components of this type of search are the

next-state generator and the heuristic evaluation function. Earlier work experimented

with different admissible heuristics for this problem: current cost(4) and shared cost(3).

Both axe guaranteed to provide the correct optimum, given unlimited time. Another type

of heuristic for the A* search is monotonic; this heuristic is guaranteed to select the best

path through the search tree. If such an heuristic can be found, it will produce the best

possible performance for that problem domain; unfortunately, such heuristics are difficult

(if not impossible) to develop. In the context of anytime processing within the OVER-

MIND system, the assumption of limited time is made due to the intractable nature of the

problem domain; thus this guarantee does not directly apply.
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The A* contained in our system uses an implementation of the shared-cost heuristic(3).

The heuristic was developed for weighted AND-OR DAGs (WAODAGs); a mapping of the

heuristic to Bayesian Networks is straightforward(32). The next-state generator expands

one RV based on a topologically ordered list of RVs. Due to the nature of the heuristic,

this ordering is from the leaves of the network to the root.

This A* algorithm was adapted for use in this system by adding the anytime and

anywhere characteristics. The first of these is by far the easier; to provide an anytime

answer, simply pick the current best partial instantiation and (if necessary) complete the

instantiation; for example, by random or arbitrary instantiation of the unassigned variables.

The completion could also be achieved by selecting local optima for the remaining variable

instantiations, for example by using the efficient polytree belief revision algorithm (26) or

by any other fast scheme. In this implementation, the solution is completed by using the

first defined state in each uninstantiated RV.

Allowing an intermediate solution to help a best-first search is more difficult. In

order to use the solutions as starting points for continuing the search, they would have

to be compatible with partial instantiations already produced by the search algorithm,

preferably such that the optimal solution be reachable from these solutions; but here,

this situation cannot be guaranteed. Even if the incoming solutions cannot be used as

"jumping-off points" by the best-first algorithm, the value of the solution can be used to

prune the search space: since we know that a solution exists with a particular probability,

any partial solutions with lower heuristic values can be removed from further consideration.

This is where a highly accurate heuristic would benefit most - as the incoming solutions

approach the optimal value, the open queue of the best-first search would rapidly reduce to

the optimal solution. The incoming solution can also be used to help with the generation

of the anytime solution; instead of using an arbitrary value to fill the uninstantiated RVs,

the values from the received solution can be used as a template. This allows the generated

solutions to benefit from the optimization that has already occurred in the rest of the

system.

Determining the probability of improvement based on a given intermediate solution

is also difficult. Lacking any knowledge about the source of our solution, the range of
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possible solutions that could be produced by the next iteration of the search algorithm

cannot be narrowed; thus the probability of selection is 1/N for all solutions. This gives:

Pimp(Si P [P(S) > P(S,)] (5.3)

NSGS

This reduces to the percentage of solutions with probabilities higher than our given solu-

tion, which is equivalent to the probability distribution function,

Pimp(Si) = P(X > c) (5.4)

where X is a discrete random variable with an underlying probability density function

P(S), the joint probability distribution of our network. The constant c is the joint proba-

bility of our given solution P(Si). If the probability distribution of our network is known,

the probability of improvement can be calculated directly; unfortunately, this is rarely the

case.

If the given solution came from an earlier iteration of this search, the probability

of improvement can be estimated by using information about the A* heuristic. The A*

search produces a series of partial solutions such that the value of the solution (cost plus

heuristic) is monotonically non-increasing. Due to the bottom-up expansion of the next-

state generation method, the RVs in this partial solution fall into two groups: I represents

those RVs that are instantiated and also have all of their parent RVs instantiated; F covers

those RVs on the 'fringe' which are instantiated but do not have all of their parent RVs

instantiated. A third group of RVs in the network consists of those that are uninstantiated;

these are represented by U.

Using these categories, the probability of improvement from one iteration of the

search to the next can be determined by comparing the probability of the given solution

(P(So)) with the probability of the next generated solution(P(Si)). Using the chain rule

to expand these probabilities for each solution:

P(Si) = P(Iil~r(I ))P(F il(Fi))P(U Il(Ui)), (5.5)

5-6



where ir() is the set of instantiations to the parents of the RVs. Note that the last term

involving U is dependent solely on the method used to complete the solution. Because the

two solutions are completed with the same value, the effects of the completed part of the

solution on the joint probability are limited to the dependencies of the RVs in F on the

completed RVs. If the cost of the partial solution is defined as the marginal probability

of those RVs that have complete parental instantiations (the set I) and ho represents the

heuristic covering the RVs not in I, the monotonically non-increasing attribute of the cost

and heuristic can be stated:

P(I1r(I1))h(F1 U U1) < P(Io1r (Io))h(Fo U U0). (5.6)

By moving the probabilities to the left side of the inequality, the following relation between

the cost and heuristic of the two solutions becomes:

P(Ii1 7r(I1)) h(Fo U Uo)
P(Iolr (Io)) - h(F 1 UU 1 )(5

Equation 5.4 only represents the relationship between two samples out of a (possibly un-

known) joint probability distribution. Equation 5.7 defines the probability distribution the

samples are drawn from in terms of the semantics used in the computation of the heuristic.

Making the proper substitutions results in:

[P(F1 Jir(F1))P(U1 I1(U1)) P(Fo Jr(Fo))P(Uoir(Uo)) (5.8)
Pm - P h(F1 U U) h(Fo U Uo) (8

This indicates that the likelihood of improvement is bounded by the relative proximity of

the completed portion of the anytime solution to the value of the heuristic representing

those same RVs. Since the solutions are completed with the same values, the significant

part of the numerator is the marginal probability of the 'fringe' RVs. The accuracy of

the heuristic and the variance in the marginal probabilities are the driving factors in this

calculation.

The level of improvement Eimp can be determined by looking at the way the search

progresses through its search space. The search processes the search space by selecting
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the most promising candidate from its open queue and creates new candidates by making

all possible assignments to a selected random variable. We refer to this action as reaching

a new level when the maximum number of assigned random variables for all candidates

is increased. The search reaches a new level only when the value of all candidates at the

previous level is less than the value of the best candidate at the current level. This is

because each time a candidate is expanded, the value of the resulting candidates is less

than the value of the original candidate, and none of the new candidates will be expanded

until all the others with values higher than its new value have been expanded.

This process impacts the quality of the generated anytime solutions because each

solution is completed in order for the other algorithms to be able to use it. If we assume

(for the moment) that a new level is reached each time a new candidate is expanded,

the original formula for the level of improvement can be expanded by substituting the

expansion of the solution probabilities from Equation 5.5 and reducing. The result is:

Eimp(So) = P(Ii7r(I1))P(F17r(Fi)) (5.9)E~mp(So = (io 17r(Io)) P (Fo 17r(Fo) ).

The difference between the two solutions is only one random variable that we call r; this

variable gets moved from the fringe set (F) to the instantiated set (I). This reduces the

equation to

Eimp(So) - P(rlr(r)) (5.10)

This result is valid for those cases where the heuristic is extremely accurate and can

select the correct candidate each iteration, resulting in a depth-first descent to the optimal

solution. In most cases, the heuristic is not that accurate. In those cases where the heuristic

is very poor, we could get a breadth-first expansion; the search would only reach a new

level when all candidates at the previous level had been expanded. The frequency of this

occurrence is the logarithm of the number of candidates expanded, with the base of the

logarithm being the number of states in the random variables.

The actual rate of descent through the search space depends on the variance in the

values in the conditional probability tables and the nature of the heuristic used: higher
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variances typically result in faster descents, while smaller variances result in more breadth-

first operations.

5.2.2 Genetic Algorithms. The class of algorithms based on simple Genetic

Algorithms (GA) is a nondeterministic approach to reasoning with Bayesian Networks.

The process of belief revision is accomplished when genetic algorithms take a small sample

from the space of possible solutions (called the population) and use it to generate other

(possibly better) solutions. The method of generating new solutions is modeled after

natural genetic evolution.

Each population is subjected to three basic operations (selection, crossover and mu-

tation) during the course of one generation; the results of the operations determine the

composition of the population for the next generation. The three operations are probabilis-

tic in nature; this allows the GA to explore more of the search space than a deterministic

algorithm. Unfortunately, there is no known method for determining if the optimal solution

has been found.

Incorporating anytime and anywhere characteristics into the GA process is straight-

forward. Since the population contains complete solutions, intermediate solutions can be

generated by selecting a high-probability solution. Solutions received from other tasks are

easily utilized by incorporating them into the population between generations. Including

the external solutions does not disrupt the GA's processing; it has the same effect as a

mutation operation.

The two issues that must be addressed when mapping a problem domain into a

problem that is solvable by GAs are:

" How to represent a solution to the problem as a gene containing a set of chromosomes

that can be genetically manipulated

" How to evaluate the fitness of a solution

For the belief revision problem domain, the gene represents a complete instantiation to the

random variables in the network; each chromosome represents the instantiation of a single

random variable. The genetic operations manipulate each gene by changing the values of
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the chromosomes; if an invalid instantiation is computed as the result of an operation, a

randomly generated valid instantiation is substituted. The fitness evaluation is simply our

solution quality calculation; in this case, it is the joint probability of the solution.

The selection operation is the standard "roulette wheel" selection approach, based

on the ranking of the individuals within the population instead of the absolute perfor-

mance value. With the wide range of performance values typical to this problem domain,

a strictly performance-based selection disproportionately favors the highest probability so-

lution; this causes premature convergence of the population onto a localized optimum. The

crossover operation performs a two-point crossover: two selected genes are broken in two

randomly selected places and the middle sections are exchanged to form the new members

of the population. Mutation randomly selects a chromosome to modify and then randomly

chooses a new value for that chromosome.

The result of this genetic manipulation is that the population tends to converge

towards a localized optimum in the solution landscape; the convergence is exhibited by the

population containing a large number of the same solution. If the mutation operation is

disabled, this convergence typically occurs quite rapidly; unfortunately it is not possible

to determine if this local optimum is actually the global optimum. The mutation operator

helps the GA find other (better) local optimum by forcing some members of the population

to lie outside of the current local optimum.

The probability of improvement is dominated by the probability of selection. The

probability that a given solution is better than the initial solution is just the probability

distribution itself. If the GA is viewed as a set of separate selection operations with

identical characteristics, the probability of improvement for the whole operation is

Pimp 1 - (1 - Pmp)M

where Pi'mp is the probability of improvement for each member of the population of size

M. This obviously is a gross oversimplification, but it does show the significant potential

performance for the GA in the early stages where Pmp is quite large.
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Determining Pimp for the GA requires knowledge of the probability of selecting a

given solution, something that in general cannot currently be calculated; but for our prob-

lem domain it is clearly dependent on several factors including the following: the prob-

ability distribution of the Bayesian Network, the function used to evaluate the members

of the population and the number of RVs that are different from the current member of

the population. In a simple case where the evaluation function is the joint probability of

the solution and the landscape has only a single optimum, the individual probability of

selection can be approximated by P(S), giving us

Pimp(SO) -Z P(S1)P(P(S) > P(So)) (5.11)
SES

which is the sum of solutions whose values are greater than the value of the initial solution;

a value that can be estimated from the probability distribution of the Bayesian Network.

As the members of the population evolve towards their local optima, the level rises and

the probability of finding a higher probability solution decreases. Empirically, it has been

shown that GAs can find good solutions quickly(28); but again, we do not know when we

have the optimal answer.

The level of improvement for the GA is determined by its rate of convergence; this

is determined by characteristics of the solution landscape. The crossover operator moves

the population in small steps "uphill" (towards the closest local optimum); the steeper

the slope, the faster the population as a whole converges. If the landscape is level, the

crossover and selection operators have no direction in which to move the population, and

convergence does not occur. For Bayesian Networks, the topology of the landscape is a

function of the distribution of the conditional probabilities for the random variables; highly

skewed networks produce landscapes with steep slopes.

Given two genes, G1 and G 2 , from the GA's population selected for crossover, the

joint probability of the resulting genes can be calculated. The probability of the initial

genes are
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P(GI) = P(xl (xij)) (5.12)

P(G 2 ) = P(x 2j 17r(x 2j)) (5.13)

I

The crossover operator changes the values of one or more RVs; let the set of changed

RVs be I and the set containing the RVs who have the members of I as their parents be

S; let the set R be the remainder of the RVs. The probability of the original first gene is

then

----[ | P(xlii 1r(xii))| P(Xlj 17r(Xlj
) )  P(Xlk 17r(XlJ))(.4

[iER, I ILkESI

After crossover the RVs in I have new values, with the corresponding change in the con-

ditional probabilities used to calculate the joint probability; this is the second product in

the above equation. The conditional probability for the RVs in S also change due to the

different values of their parents. Thus, the joint probability of the new first gene is

P(GI1) [PVxiT Xi) P(xlj17r (Xlj) 11V(XI, T7r(Xl,)) (5.15)

Notice that the first product term remains the same; so the level of improvement, which

is the ratio between the original and new joint probabilities, reduces to

Eimp(SO) = P(G1) [Ii P(x',l7(xbi)) ] [HkEs P(Xlk lw'(xlk))] (5.16)P(Gi) [1-jE~i g(Xlj 1T[(Xlj))] [1-MES g(Xl1 17r(Xlk))

This ratio represents the slope of the landscape; a ratio greater than one results in an

increase in probability. The terms in this ratio are values pulled from the distributions of

the conditional probability tables; the value of the ratio is statistically most likely to be

within the interval
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where a and T are parameters of the conditional probability distribution. This clearly

shows that the slope of the landscape is directly related to the parameters of the underlying

distribution of probabilities in the Bayesian Network.

5.2.3 Hybrid Stochastic Simulation (HySS). The stochastic simulation algorithm

uses a combination of random search and local optimization to perform belief revision.

This method differs from an ordinary random search in two ways. First, a set of solutions

is maintained as for the genetic algorithms; the members of the set do not interact, but

the overall quality of the solutions in the set is used to steer the search towards better

solutions. The second difference is in the method for selecting the members of the set:

instead of choosing a random solution each time, each member's joint probability is used

to determine whether that solution is optimized or replaced. If the solution is to be

optimized, it is analyzed to determine the change to a single random variable instantiation

that produces the largest increase in joint probability; this new solution replaces the original

in the solution set.

This algorithm has three parameters:

Stability determines, in combination with a solution's joint probability, the likelihood

that a solution S is retained in the the population or replaced with a new random

solution.
stability * P(S)

retained - P(S')

where S' is the highest probability solution found in the run.

Regression controls how far the search is allowed to regress for each iteration. Regression

is measured by comparing the probability mass contained in the current population

with that measured from the previous population. If this ratio is less than the

regression parameter, the current population is discarded and a new population is

generated.

Population Size is the size of the population that is retained each iteration.

The stability parameter has the largest impact on the performance of the simulation

during each iteration. A low value (close to 0) turns the process into a pure random

5-13



search, while a high value results in a pure local optimization of the solutions in the

original population.

The random nature of this search does not allow it to recognize the optimal solution;

but as with Genetic Algorithms, the Stochastic Simulation is easily adaptable to anytime

and anywhere operation. The best solution in the population is easily used as an anytime

solution, and the received solution can be placed directly into the current population since

it is as good or better than any existing member. Note, however, that the best solution is

not guaranteed to survive until a better one is found; it could be selected for replacement

at any time (this is unlikely, but possible). We use a best-so-far filter to ensure that the

value of the distributed anytime solution does not decrease in value.

To analyze the performance of the algorithm, we need to first look at the algorithm's

behavior on an individual member of the population; then we can determine the aggregate

behavior for the entire population. For a given member S of the population, the probability

that the solution S1 generated from S by the next iteration of the algorithm will be better

than the previous solution can be stated as:

Pimp, = PretainedPopt + (1 - Pretained)grandom (5.18)

Prandom is the probability that a new solution will be chosen randomly from the solution

space with a solution quality greater than the original solution:

Prandom " Pseect(S')P(P(S') > P(S)) (5.19)

and Popt is the probability that the solution can be improved in the local optimization

step:

Popt = 1- H [p (P(r',7r(r')) f1 P(cIir'(c)) > P(rIr(r)) J1 P(clIr'(c)))] (5.20)
rCR C C)I

where R is the set of all RVs and C is the set of children of the RV being considered r.

In other words, it is the probability that there exists an RV r' with a marginal probability

greater than the original solution for at least one RV. The left side of the inequality
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is the marginal probability of an RV ri and its children rj; the right side is the marginal

probability of the same subset of RVs in the solution S. Since only one RV is modified in the

local optimization, the probability that improvement can occur for one RV is independent

of any other RV; so each RV can be treated as a separate event and the probability of the

whole is the probability that at least one RV will improve.

This probability is dependent only on the position of each marginal probability within

its distribution. Initially, the probability is high since the initial population is randomly

generated; as the solutions are improved, the probability decreases until one of the local

optima is reached. Due to the structure of the Bayesian Network, a change in value of one

RV may have an effect on its neighbors in the network; therefore, each RV may need to be

changed more than once to reach the local maxima. It is worth noting that according to

Equation 5.18, the only time there is no possibility of improvement (Pimp, = 0) is when

S is the optimal solution. For any other solution in the population there is always the

possibility of improvement; either from local optimization or from random selection.

When combining the individual member probabilities into a composite probability

for the whole population, we need to consider the fact that the members are starting out at

different solution quality levels and that the anytime solution for this algorithm is the best

solution in the population. This means that a significant improvement in the quality of

one member may still not improve the overall solution. Equation 5.18 needs to be restated

to reflect the probability that the change to the member will improve the overall solution

quality:

Pimp (Si) = Pimp P(P(S') > P(Si)) (5.21)

= PretainedPoptP(P(S') > P(Si)) +

(1 - Pretained)Pseect(S')P(P(S') > P(Si))

where Si is the best member in the population: the anytime solution. The added term

reflects the likelihood that the solution produced by manipulating the member will be

better than the global best solution. With everything relative to the same solution, the
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probability of improvement for the entire population is simply

Pimp( S) = max(Pimpx (Si)) (5.22)

over the individuals x in the population since each member is manipulated independently.

In a cooperative environment, the incoming anytime solutions are placed directly into the

population; thus Equation 5.22 also gives us the probability that the HySS will improve

the overall system solution quality.

Unlike the probability of improvement; the level of improvement Eimp is not de-

pendent on the parameters given to the HySS algorithm; instead, (as with the GA) it is

dependent primarily on the parameters of the probability distributions for the conditional

probability tables. The HySS algorithm always makes the one-random variable change

which maximizes the improvement; this gives us an easily determined relationship:

Eimp + 0 (5.23)

5.2.4 Barrier Computation. The Barrier algorithm presents a significant dif-

ficulty to this method of analysis since it is not an anytime (or anywhere) algorithm.

Initially, it would seem that this problem would make the algorithm unusable; but if we

keep the intent of the analysis in mind, we can generate some usable results.

The purpose of the probability of improvement is to allow the controller to deter-

mine the algorithm that is most likely to contribute to the system's progress. Technically

speaking, the probability of improvement for the Barrier algorithm is 1.0, since it will

produce the optimal answer when it finishes; the problem is the time frame involved. For

anything larger than a toy network, the Barrier algorithm takes more time to solve the

network than most anytime algorithms take to produce a single solution, so we need a way

to take the time into account in generating the probability of improvement. This is where

the Barrier algorithm helps us out: it is fairly simple to get a close approximation of the

time required for the algorithm to solve a particular network. One way would be to spread

the probability of improvement for the entire solution process uniformly over the solution
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time. Given a time interval At, the probability can be calculated as:

At
Pimp(S) (5.24)

where t, is the time for the Barrier algorithm to complete. This provides an indication of

how close this algorithm will get to the solution in the specified interval.

Level of improvement is another difficult concept for this algorithm: We will end up

with the best solution, but we do not know what the value of that solution is ahead of

time. Since this factor is used to find the algorithm which has the most impact on the

system's output quality, it has to be 1.0 (indicating no improvement) unless the algorithm

will complete; then some arbitrarily large value can be specified to signal that it will finish.

5.3 Algorithm Interaction

With the analysis method for the different algorithms established, it's time to look at

what the impact when the algorithms are used cooperatively. Intuitively, the combination

should perform at least as well as the algorithms run individually (assuming no resource

limitations); but the open issue is whether to expect an improvement over the individual

algorithm performance. Our initial experiments confirmed this expectation in some, but

not all cases. These initial results initiated the effort to determine which properties of the

algorithms combine to produce better results as well as what causes the poor results. The

goal is to be able to select good initial algorithm combinations in addition to recognizing

algorithm combinations that do not work well.

The OVERMIND system provides the mechanism for the anytime solutions to be

shared between the cooperating algorithms, allowing each algorithm to receive and utilize

the current best solution. In general, the solutions received from the other algorithms

can affect the execution of the algorithm itself or they can affect the way its anytime

solutions are generated. The next step is to determine specifically how each class of anytime

algorithms reacts to the shared information. Since only anytime and anywhere algorithms

have the capability to produce and receive solutions, the Barrier algorithm has no capability

to interact with the other algorithms and is not discussed here.
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5.3.1 Exact Algorithms. The A* search uses the incoming solutions to set a lower

bound on the search process. For the A* this unfortunately does not significantly reduce

the run time since the search works by reducing the upper bound. It can, however, reduce

the space requirement by eliminating segments of the search space that fall below the value

of the received solution.

The greatest impact of the incoming solution on this algorithm is in the genera-

tion of anytime solutions. The use of the received solution as a template to fill in the

incomplete parts of the partial solution instead of using a random or arbitrary template

can significantly improve the quality of the completed solutions. Most exact algorithms

expand their search progressively from either the roots or the leaves of the network; using

the sets of RVs defined in Section 5.2.1, the difference between completing the solution

arbitrarily and with the received solution is limited to the RVs in the F and U sets. Thus,

the solution completed with the incoming solution is better than the solution completed

with the arbitrary solution when

P(UljIr(U))P(FI ir(Fi)) > P(Uolir(Uo))P(Folir(Fo)) (5.25)

Once the quality of the incoming solution is higher than the arbitrary solution, the resulting

completed solutions will be better.

5.3.2 Approximate Algorithms. The class of approximate algorithms typically

work with complete solutions, and the GA and Stochastic Simulation are no exception.

Incoming solutions are used directly by the algorithm to improve the algorithm's perfor-

mance. Both approximate algorithms used here incorporate the incoming solution directly

into the pool of solutions being manipulated. The presence of the higher probability solu-

tions improves the algorithm performance if the new solutions are significantly better than

the rest of the solutions in the pool.

Approximate algorithms by themselves are usually not extremely effective at finding

optimal solutions, but they can be quite good at performing local optimization; this can

be quite useful when used in combination with other (exact) algorithms.
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5.3.3 Combinations. A system composed of combinations of dissimilar algorithms

yields performance that is as good as or better than any of the component algorithms

individually. With the different algorithms executing independently with no cooperation,

the probability of improvement for the system at any given time is

PimptotI(Si) ( 1- fI(1 - Pimpj (Si)), (5.26)
j

which is the probability that at least one algorithm will improve. Unless the probability

of improvement for all algorithms is zero, we always gain something by utilizing multiple

algorithms. This confirms our initial intuition. We now show that Equation 5.26 also holds

for systems of cooperating algorithms:

Theorem 1 The probability of improvement for a system composed of multiple unique

cooperating algorithms is as good or better than any of its component algorithms.

Proof: For Equation 5.26 to be valid, Pimpj (Si) for each algorithm must be indepen-

dent:

" Pimpj (Si) is defined as a conditional probability

" Pimpj (Si) is only conditioned on the anytime solution Si

" Pimpj (Si) is therefore conditionally independent for all algorithms since the value of

Si is given.

Since Pimpj (Si) is independent for all algorithms given Si, Equation 5.26 still holds.

U

The anytime solutions being shared among the algorithms are a historical quantity:

the probability of improvement is a prediction of the future performance based solely on

the characteristics of the algorithm and the problem. This higher overall probability of

improvement manifests itself as a steeper slope on the system's performance profile com-

pared to the performance profiles of its components. This confirms our initial hypothesis

and explains the performance improvements we observed, but the situations that did not

result in a performance improvement still need further explanation.
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The analysis of the algorithms in Section 5.2 indicated a similarity in performance

characteristics between some algorithms. The GA and Stochastic Simulation have similar

probability of improvement equations, which is not surprising due to the similar nature

of the manipulations performed. While combining multiple instances of algorithms from

the same class improves the performance by increasing the number of samples taken, the

improvement due to the information sharing can only take place if the information being

shared is not already known to the receiving algorithm. For example, if two identical GAs

were being used, as soon as the first high-probability solution was shared, both populations

would tend to converge to the same local optimum because the subsequent solutions would

be grown from the first shared solution; the two instances of the GA are now virtually

identical, resulting in an effective contribution to the system of only one algorithm. The

overall system probability of improvement is unchanged, as is the system performance

profile.

Performance improvement due to sharing information mostly occurs when the algo-

rithm's performance characteristic is significantly different from the rest of the collection.

One algorithm with a steep performance curve can boost the performance of a slower

performer; or if the performance curves for two algorithms intersect, they alternate the

roles of leader and follower. Obviously, algorithms from different classes have significantly

different performance profiles; but in some cases, it is possible to significantly affect the

performance of an algorithm through its parameters. In such cases, it may be beneficial

to use two similar algorithms, but with different parameters.

As an example, consider the combination of an A* search and a Stochastic Simulation.

If the target Bayesian Network's conditional probabilities exhibited a normal probability

distribution with a moderate variance, the A* would initially produce low quality solu-

tions because the heuristic and the unassigned RVs dominate both terms in Equation 5.8,

resulting in a low probability of improvement. On the other hand, the Stochastic Sim-

ulation would initially show significant improvement in solution quality: both parts of

Equation 5.22 are large because the typically low quality initial population leaves a lot of

room for improvement. When the Stochastic Simulation generates its first anytime solu-

tion, it is passed to the A*, which splices it into its current partial solution. With the
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A*'s optimal search, it is highly likely that the completed part of the solution is better

than the same part of the solution generated by the Stochastic Simulation. The splice

then generates a better solution, which is then passed back to the Stochastic Simulation

for further improvement. Once the optimal solution is reached, the A* processes its open

queue; but with its lower bound set to the optimal answer, many of the remaining branches

are discarded until the only item left is the optimal answer. A highly accurate heuristic

would benefit greatly here: once the optimal answer is found, fewer branches of the search

tree would need to be explored to confirm that the optimal answer was found.

This analysis explains the mixed results of our initial experiments(37); all the combi-

nations that showed an increase in performance were combinations containing at least one

exact algorithm and at least one approximate algorithm. It was also frequently the case

that such combinations, while not performing significantly better than the approximate

algorithm by itself, confirmed the answer produced by the approximate algorithm.

5.4 Algorithm Model

For an algorithm model to be useful for performance prediction, it must capture

the characteristics of that algorithm's behavior on the different instances of the problem

domain. The analysis in the previous sections develops the concepts of probability of

improvement and level of improvement, which together indicate whether the algorithm is

likely to improve and how much it is likely to improve. The process of performing the

analysis also produces as a side effect the characteristics of the problem domain which

are parameters to the algorithm's behavior. These characteristics are represented below

by the symbol A(; its presence indicates that each of the factors within the model is

calculated using domain-dependent information, but that information is contained in the

implementation of the model, not in the specification.

The two performance-related factors already mentioned could be used alone to select

and evaluate algorithms and combinations thereof, but there are other factors that can

be important in evaluating algorithms. One such factor is the time and space complex-

ity of the algorithm on that particular problem instance. Traditional complexity analysis

gives us a complexity value dependent on some characteristic of the problem, typically the

5-21



dimensionality or size of the problem; but some algorithms also respond to semantic char-

acteristics such as graph topology. Our assumption that the problem is large or complex

enough to make it intractable somewhat reduce the need for complexity analysis, but it

can still provide an indication of how far the algorithm might be able to progress towards

the optimal solution.

In a distributed environment, one obvious approach is to skip the selection process

and simply run all of the algorithms together at the same time, assuming that we have

enough systems. While this approach has its merits in simplicity and could be utilized

if the number of algorithms available were small and the systems were dedicated to this

purpose, neither of these assumptions are likely to be true for a realistic scenario. For this

reason, we want to make reasonable use of the resources available to us, and the number

of systems being used must also be a factor in the selection and evaluation process.

In a dynamically configured system, one issue that needs to be addressed is the con-

cept of thrashing: the continual, repetitive switching among a small set of configurations.

This wastes system resources in sever ways, but the important one to us is that the algo-

rithm cannot contribute to the progress of the system when it is initializing. This dead

time during algorithm initialization should therefore be a factor for run-time evaluation.

While the No Free Lunch theorems(38) clearly state that past history of an algo-

rithm's performance on a given problem (or even problem domain) has no bearing on its

potential future performance, it still needs to be a factor in the run-time evaluation. The

premise under which we operate is that the problem is intractable and that the algorithms

we use are anytime; the focus is on short-term performance. If an algorithm is not pro-

ducing solutions in the short term which advance the output solution quality, they are

wasting resources and should be candidates for removal from the current configuration

if their performance factors do not warrant their presence in the system. This does not

necessarily mean they will never get used again, but merely that they are not effective at

this time.

Following is a more precise definition of the seven model factors. The model factors

are parameterized on these quantities:
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* s: The current highest quality solution produced by the system. For initial algorithm

selection, this is some initial solution appropriate to the problem.

" t: The total running time of the algorithm(s) being evaluated. For initial algorithm

selection, none of the algorithms has yet run, so it is set to zero.

" At: The time interval over which we want to evaluate the algorithms.

Again, notice the lack of domain-dependent information. It is at this level in the model

hierarchy where we declare the domain independence: below is the domain-dependent

application of these model factors, but above is our domain-independent control model.

5.4.1 Factor Description.

Level of Improvement (C(s, t, At)) How rapidly will the algorithm approach the solu-

tion? To get the system off to a fast start, we prefer to use algorithms that progress

rapidly towards the optimal solution right from the start. This factor is an extension

of the level of improvement discussed earlier; the level of improvement analysis is

applied over the time interval [t, t + At] instead of a single iteration of the algorithm:

C = f (f, s, t, At)

where s is the current solution at time t and the function f is the algorithm-specific

method for applying Eimp over the time interval. Ideally, this approximation should

be more accurate for smaller values of At, with the error increasing as At increases.

Probability of Improvement (I(s, t, At)) How likely is this algorithm to produce an

improved solution in the given interval? We want to select algorithms which are

more likely to produce some improvement over the current solution quality in the

system. This concept was discussed earlier, and is now applied over the time interval

[t, t + At] as with the level of improvement:

; = g(.A/, s, t, At)

where g models the effect of the time interval on the specific algorithm involved.
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Time Complexity (T) How long will it take this algorithm to solve this problem? For

obvious reasons, we prefer to use algorithms with a lower time complexity to solve

our problem; this factor quantifies the time complexity by specifying the constant

that is implicit in traditional worst-case complexity analysis of algorithms:

7- = Cti,.O (K')

Af represents the characteristics of the given problem instance within the problem

domain. The constant Ctime is dependent on the specific implementation of the

algorithm and the speed of the hardware used; it could be determined empirically,

but it also could be learned as the system is used. In general, this factor should be

an estimate of the time required to completely solve the problem.

Space Complexity (S) How much space will this algorithm need? It is also preferable

to use algorithms with smaller space complexity. We similarly quantify the space

complexity:

S = CspaceO(A)

This constant is also dependent on the specific implementation of the algorithm, but

is less dependent on the hardware used. As with time complexity, this factor should

represent the space requirements for completely solving the problem.

Resource Usage (7.) How much of the overall system resources will be used by this al-

gorithm? Typically, we also want to minimize the amount of system resources used

to solve the problem:

7 = Cresg(CPUs)

The scope of this factor can be as broad as the number of systems or processors used,

or as specific as the amount of memory and disk space needed. Whatever is used

as the measure, the quantification should represent the resource impact of using this

algorithm.

Reconfiguration Cost (g(u)) How much does it cost to start this algorithm? It takes

time and effort to reconfigure a system, so we want to avoid changing the system
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unless the difference is significant. This factor represents the amount of time required

to start the algorithm, plus an additional penalty value if desired; if the algorithm is

currently running, the value is a non-zero constant.

Interaction Frequency (F(u)) How frequently has this algorithm contributed to the progress

of the system? We want algorithms that actively participate and share solutions.

This value is a statistic gathered at runtime and represents the percentage of the

total generated solutions which advanced the solution quality of the system. For

algorithms which have not started, we set the value to an optimistic 100%.

Note that only one of these criteria is historical; our models rely primarily on pre-

dictions of future behavior. Past performance is not necessarily useful in predicting future

behavior 1 , especially when multiple algorithms are used. The only other historical infor-

mation used is the current solution quality; however, since it is the current solution for

the entire system, it is not necessarily a measure of past performance when evaluating any

specific algorithm.

5.4.2 Algorithm Combinations. Each of the model factors are evaluated for each

individual algorithm for the given problem instance A; however we also want to evaluate

different combinations of algorithms. There are two approaches we can take: analyze each

possible combination of algorithms, producing a separate model for each combination; or

combine the results of the models for the individual algorithms, producing a composite

result.

A simple method for calculating a combined utility value uses the extreme values

for the different factors. The convergence rate of the combined system is driven by the

performance of the best algorithm, so we must use the highest level of improvement; but

the algorithm with the worst time and space complexity still drives the complexity of the

overall system. We cannot, however, do this with the resources, since the sum of the

resources is used for the combined system. This gives us a more general definition of our

1This concept is a major component of the No Free Lunch theorems(38).
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factors:

C' = max Ci

T' = maxI

T' max77

S' = max S,

G = max 9i
min

1'= min

This method of producing a composite utility is useful if the algorithms do not interact

with each other, or if the effects of the interaction are minimal.

If the algorithm interaction (through the sharing of anytime solutions) has a sig-

nificant impact on performance, the simplified model presented above is not effective in

recognizing which combinations benefit from such interaction. We need to replace the

level of improvement and probability of improvement factors with new terms reflecting the

performance characteristics of all algorithms in the combination, this time accounting for

the interaction.

Unfortunately, the calculation of this new term is not as simple as for a single al-

gorithm. Since the interaction between the component algorithms occurs throughout the

time interval t, a simple combination of the convergence factors for the individual algo-

rithms is not adequate. We can, however, simulate the interaction by iteratively calculating

the convergence factors at approximately the same rate that the algorithms would actu-

ally exchange solutions; this rate is determined by obtaining for each algorithm the length

of time between production of solutions. At each iteration, each algorithm model would

account for the received solution in its prediction for the next iteration as shown in the

algorithm in Figure 5.2. The best score received from any algorithm is retained for the

next iteration.
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function C'(c, SO, to, At)
let t, = algorithm exchange time

= max{tj li E c}
S - S 0

t, = to

while t' < (to + At) do
8 = max{Ci(s', t',i)Ii G C}
tI = tl + [

return s'

Figure 5.2 Algorithm for calculating convergence factor for combinations with multi-
ple algorithms. c represents the combination and i refers to the individual
algorithms within the combination.

The probability of improvement factor combines in a much more straight forward

manner when combining algorithms. The probability of improvement for the algorithm

combination is simply the probability that at least one of the algorithms will improve:

1'(s, t, At) = 1 - 1(1 - Ti (x, t, At))
i

for all algorithms in the combination. This is possible due to the fact that the probability

of improvement for each algorithm is independent of the others given a particular state.

5.4.3 Model Application. The goal when applying the model's performance fac-

tors is to provide an approximate answer quickly; therefore, we need to use equations with

very small computational complexity. The approximation should be reasonably accurate

over short intervals, possibly at the expense of long-term accuracy. Constant time expres-

sions are obviously best, but are not always usable; however, the complexity should be kept

to a minimum whenever possible. For similar reasons, we also need to use characteristics

of the network that are easily determined.

When constructing the model factors, it is important to capture the features of the

algorithm that make it useful. For example, Genetic Algorithms are generally insensitive to

network topology, but extremely sensitive to the probability distribution of the conditional

probability tables within the Bayesian Network. The Barrier algorithm, on the other hand,
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is very sensitive to topology, but is not affected at all by the probability distribution of the

individual random variables.

For approximate models, the time complexity is problematic: approximate algorithms

have no termination condition, so the time complexity is by definition infinite. We do not

want to eliminate approximate algorithms, since they have proven in practice to be quite

effective in finding high-quality solutions. Our model can address this problem by using the

time complexity of one iteration of the approximate algorithm in place of the complexity of

the entire algorithm run. This still emphasizes lower cost algorithms without eliminating

an entire class of effective solution methods.

Care also needs to be taken to ensure that the models are constructed such that

comparisons between running algorithms and non-running algorithms produce the desired

result. New algorithms will be added to the system only when the running algorithms have

stopped contributing or if the non-running algorithms can make a significant contribution

to the system performance.

Examples of the application of the algorithm model to the algorithms used for belief

revision on Bayesian Networks can be found in Appendix B.

5.5 Summary

The algorithm model developed in this chapter captures the performance of the

algorithm, parameterized by the characteristics of the problem domain. This model is

developed analytically to avoid the extensive amount of time required to do empirical pro-

filing; yet due to its approximate nature, it can be extremely simple to evaluate. The

model focuses primarily on predictive modeling. While the No Free Lunch theorems con-

clude that past performance is not useful in algorithm selection or evaluation in the long

term, our limited use of historical information allows us to evaluate short-term efficiency

of algorithm combinations. This model forms the foundation for the overall control model,

providing the means for the algorithm selection and run-time control processes to evaluate

the candidate combinations.
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VI. Initial Algorithm Selection

The goal of the initial algorithm selection phase (Phase 3 from the research plan) is not to

select the optimal set of algorithms to solve the entire problem. As discussed before, such

a task would be difficult, if not impossible. We also face the added difficulty that it is not

always possible to solve the problem in the time we have available. With this in mind,

we want to use models of the algorithms which are easy to compute; all we need to do is

select a reasonably good set of algorithms to get the system started, and then the run-time

controller will take over to finish the job. Obviously, the more accurate the models are, the

better the system performance will be at first; but as we will see later, this is not essential

to obtaining a good result from the dynamic phase of the system.

6.1 No Free Lunch

In a recently published paper(38), Wolpert and Macready present a set of theorems

called the No Free Lunch Theorems concerning algorithm performance. To summarize,

their conclusions fall mostly into two categories:

* There is no benefit in choosing one particular algorithm over another in the general

case. The assumption in this case is that the algorithm does not know about or take

advantage of any domain-specific knowledge.

" Given a specific algorithm, its past performance on problems within the problem

domain are not useful in predicting performance on other problems in the same

domain. (This concept was discussed in the previous chapter.)

" Without future performance knowledge about the algorithms involved, no algorithm

selection method will perform better than any other method.

In many ways, these conclusions are common sense, but they serve to focus attention on

what information is actually required for the algorithm selection process to be successful:

knowledge about the algorithm.
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The algorithm models developed in Chapter V capture the essential characteristics

of the algorithm's behavior over the problem domain. This gives the selection algorithm

what it needs to successfully make its decisions.

6.2 Selection Process

One fact that can simplify the static algorithm models is that we are only interested

in the early stages of the algorithm's behavior. We only need to get the solution process

started; the dynamic controller will take over after a small initial interval At. Since we are

are using approximate models of the algorithms, we can expect their accuracy to decrease

as At increases; this is not a problem because At will typically be small so that the

controller can take over.

Only four of the model factors developed in the previous chapter are useful in static

selection: Time Complexity, Space Complexity, Level of Improvement and Resource Usage.

These factors are calculated prior to execution, so there can be no dependence on run-time

system characteristics, but rather on the characteristics of the problem being solved and

the algorithms themselves.

The selection process has two objectives:

1. maximize system performance by selecting algorithms which will produce the highest

quality solution at the end of the time interval At;

2. minimize the system resources needed, specifically the number of processors used and

memory requirements.

The first objective is measured primarily by the level of improvement factor, but the time

complexity factor can also be used as an indicator of how complete the algorithm will be

in the interval. The resource objective is indicated by the space complexity and resource

usage factors.

For obvious reasons, these objectives are typically conflicting. The decision-making

process must accommodate this conflict when determining the best algorithm to use. The

technique known as multicriteria optimization(33) can be used in this case to determine
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which algorithm combination to use. The optimization is done as a two-step process: first,

determine the Pareto-optimal set of configurations; then use a linear weighted sum to make

the final selection.

The multicriteria optimization problem can be stated as finding the best combination

from the set of all combinations C such that:

= argmaxF(c) where
cEC

F(c) (FI(c),F 2 (c),F 3 (c),F 4 (c)) = (C', Tc- ] -' ,7Z ). (6.1)

Notice that the reciprocal of the time, space and resource factors is being maximized since

these are minimization objectives. Unfortunately, as is typical with this type of problem,

the same value of c rarely maximizes all four objectives at the same time, so the traditional

approach is to first find the Pareto-optimal set of combinations. This process eliminates

the obviously inferior combinations by subjecting each combination's vector of factors to

a partial ordering -' , defined as:

F(co) < F(cl) if and only if F(co) < F(c 1 ) Vi C R

F(co) < F(cl) if and only if F(co) < F(ci) Vi E R

F(co) = F(cl) if and only if F(co) = F(ci) Vi E R

F(co) -< F(ci) if and only if F(co) < F(ci) and F(co) : F(ci) (6.2)

where R is the dimensionality of our vector, in this case four. With this partial ordering,

we can define our Pareto-optimal set P as:

P = f C CIF(c) $ F(e) Vc E C} (6.3)

It is possible (in fact, highly likely) for the set P to contain more than one combination;

we then use a linear weighted sum to determine the combination e out of P to use:

Given: s,t, At

= arg max U(s, c, t, At) (6.4)
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where the utility function U is:

1 1 1

U(s, c,t, At) = MconvCC(t, At, s) + Mtime + Mspace 1 + Mres (6.5)

The factors used to calculate the utility of a given combination c are specific to that com-

bination, hence the subscripts. The coefficients (M) allow the user of the system to specify

a preference as to which of the factors to favor in this final determination. The combi-

nation with the highest utility is the best compromise (subject to the user's preferences)

between performance, complexity and resource usage. Given equal utility values for the

best combinations, some arbitrary method may be used since those combinations should

have equivalent performance.

6.3 Summary

This selection method provides the means to choose an initial algorithm combina-

tion for the system, balancing the conflicting objectives of performance versus resource

efficiency. In general, the process of selecting an algorithm without any domain knowl-

edge does not provide any benefit. However, the use of the algorithm models presented

earlier gives the selection process the added information it needs to successfully make

its decisions. The use of multicriteria optimization allows the system to select the best

combination subject to the priorities set up by the user.
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VII. Run-time Control

The final phase of the research addresses the issues of managing the cooperative processes

during execution. For the purposes of discussion here, we assume that the problem is large

or complex enough that finding the optimal solution is not feasible. This opens the door

for the use of anytime algorithms, which provide solutions of increasing quality throughout

the duration of their execution.

We have already discussed the initial selection of algorithms; but since our selection

methods depended on approximate models, there is no assurance that the actual per-

formance will match what we predicted. The system needs a means of monitoring the

execution of the selected algorithm(s) and ensuring that the system as a whole speedily

converges towards the optimal answer. This dynamic control of the inference system needs

to address three primary issues:

" maximize the rate of increase in solution quality,

" resource limitations or constraints,

" provide a stable control framework.

The first two goals are typically contradictory, or at least do not always favor the same

approach; the controller must balance these two goals and take a compromise position

between them.

7.1 Plant Model

When developing a discrete control structure, the traditional approach is to use the

feedback model shown in Figure 7.1. The plant is modeled by equations of the form(8):

Xt+1 = f(xt,u lt) (7.1)

Yt = g(xt) (7.2)

The first equation maps the current state of the plant (x) and the current control input (u)

to the next state of the plant. The second transforms the state into the current output of
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Domain Process Output (y)

Information

Inputs (u) State (x)

Controller

Figure 7.1 Fundamental closed-loop controller

the plant (y). In our situation, the distributed system itself is the plant; its initial state is

determined by the domain information specific to the problem instance being solved and

the output is the current anytime solution. To complete the model, the control inputs to

the plant need to be identified as well as the composition of the state of the plant. At that

point, we can develop the control strategy and assemble the system.

7.1.1 Control Inputs. Given the nature of our inference system, there are dif-

ferent levels at which we could exercise control over the process: control the behavior of

the individual inference algorithms, control the interaction between the algorithms in a

composite system or control the composition of the system itself. The first method re-

quires detailed knowledge of the internal workings of each algorithm. While this could

result in a very high-performance and stable system, our goal is to provide an algorithm-

and domain-independent architecture for distributed problem solving. There is also the

problem that some algorithms are not structured to allow any sort of external control;

deterministic algorithms typically are this way.

Controlling the interaction between algorithms is definitely at a higher level, but

would most likely prove to be counter-productive. It was clearly shown earlier that inter-

action between algorithms cannot result in decreased performance.

This leaves the highest level of control: managing the composition of algorithms

in the system. This provides direct control over the process while still avoiding a direct
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dependence on a specific problem domain. There are five basic actions involved in managing

the inference system:

1. Stop the system: we found the optimal answer (we do get lucky once in a while)

or an answer that is acceptable.

2. Stop the system: we have run out of time or resources.

3. Stop one algorithm: either the algorithm has stalled, or is not performing well

enough to justify leaving it running.

4. Start one algorithm: introduce a new algorithm to the system to increase the level

of performance.

5. Restart with new combination: try again with a completely new set of algo-

rithms.

The first two actions provide our termination action - either by having a way of recog-

nizing the optimal solution when it is generated, or by using some form of utility value

to determine that further efforts would not be cost-effective. Starting and stopping indi-

vidual algorithms can be used to manage the system's makeup; but with the interaction

between the algorithms, each algorithm's performance is no longer independent and we

cannot manage them individually. We therefore push the abstraction one level further and

consider each combination of algorithms as a unit and make our decisions at that level,

conveying these actions to the plant through a vector of Boolean variables representing the

status of each algorithm:

U - {_ u -=(A1,,A2,... ,n IAi c{0,1JVi G 1 ... n}.

7.1.2 State. The controller's purpose is to take actions that move the plant's

state into a region within the state space to meet the controller's objectives. The state of

the plant must contain enough information so that the controller can decide the action to

take next and evaluate the progress of the system. For our composite distributed system,

the state contains the following:

* the current best solution produced by the system as a whole
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* the state of each algorithm in the system (running or not)

or, more formally:

X-Sx U

where X is the state space of our system, S is the set of all solutions in the problem domain

and U is the set of all possible control inputs, representing all the possible configurations

of the system.

The controller needs to know about each algorithm in the system to determine

whether the algorithm should be added to the system, removed from the system or left

alone. The current best solution is the progress measure; it is used by the controller to

evaluate the progress of each algorithm, as well as the entire system.

7.1.3 Final Plant Model. The general plant model equation in 7.1 can now be

expanded as the following:

A :X-S

B :U - U

xt+l (A(xt),B(ut)) (7.3)

where the relation A models the affects of the inference algorithms on the solution com-

ponent of the state and the relation B uses the control inputs to reconfigure the system as

directed by the controller. To complete the model of the plant, we expand Equation 7.2

to provide an output projection C which extracts the solution from the state vector:

C : X-S

Yt = C(xt) (7.4)

7.2 Control Strategy

The goal of the controller is to determine at any given point in time what system

configuration will produce the best expected performance. Breaking this down, we have

four separate (but related) objective functions:
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1. maximize the output solution quality

2. maximize the expected performance of the system

3. minimize resource usage

4. minimize control actions

The first objective also happens to be the goal of the distributed process itself; but

the controller has no direct way of affecting the solution quality. Instead, it can manipulate

the composition of the system, starting and stopping algorithms as desired in an attempt

to affect the output solution quality. We need a Control Law to produce the next control

input for the plant when given the current output state of the plant:

D : X -+U

Utl - D(xt+i) (7.5)

Remembering that the control inputs to the plant consist only of configuration

changes, the control law reduces to selecting appropriate algorithms based on the current

configuration and solution quality. We use all seven factors from the algorithm model to

evaluate the currently running algorithms in addition to evaluating new algorithms. This

evaluation is accomplished in a similar fashion to the initial algorithm selection by using

multicriteria optimization to find the optimal compromise between the different objectives.

As before, the level of improvement factor is maximized, but for run-time evaluation, the

probability of improvement and interaction rate also need to be maximized. The time and

space complexity factors are still minimized in addition to the resource usage and restart

cost factors.

As with the initial algorithm selection, we determine the Pareto-optimal set P of

controls, then maximize a linear weighted sum of the above factors to determine the best

control fi. Thus, our control law from Equation 7.5 is as follows:

D(x) fi = argmaxF(u) where (7.6)
uEU

F(u) (Fi(u),F2 (u),F3(u),F4 (u),F 5 (u),F 6 (u),F7 (u))
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Using the ordering in Equation 6.2, the Pareto-optimal set is described by:

P = {f UIF(u) $ F(fi) Vu E l1}. (7.7)

The selected algorithm combination is decided by optimizing the utility equation over the

Pareto-optimal set:

Given: x = (A,u),t, At

= arg max U (, u, t, At) (7.8)
uEP

and the utility function becomes the following:

U(s,ut, At) = Mimplu(s,t, At) + MconvCu(s,t, At) + Mfreq.Tu(U) +
1 1 .11

Mtimej1 + Mspace 1 + Mres + Mconf 1 (7.9)

Again, we insert weighting factors M to allow the user to specify preferences. Arbitrary

methods are used here as well to break any ties.

7.3 Controllability, Stability and Optimality

As discussed in Chapter II, for the controller to be effective, certain issues must be

addressed: controllability, stability and optimality. Each of these concepts is discussed in

more depth below.

7.3.1 Controllability. The simple definition of controllability is that the controller

must be able to transition the plant from any state to the set of target states within a

finite amount of time. Based on the definition of the state presented earlier, the set of

target states is defined as the states which contain the configuration which optimizes the

the utility function, regardless of the solution. This definition flows directly from the

objectives of the run-time controller.
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Controllability is a necessary condition for the controller to have a desired effect on

the behavior of the plant. In the plant model, the component of the model that responds to

control input and affects the system configuration is the relation B(u) from Equation 7.3.

Since it simply sets the configuration to whatever the control input specifies, there are no

limits on transitions between configurations and our system is completely controllable.

7.3.2 Stability. While plant stability is not required for a successful controller, it

is desirable and can simplify the design of the controller. Simply stated, a plant is stable if

a small change in the input does not cause a massive change in the output of the system(8).

While it is difficult to quantify the stability of the system due to the composition of the

plant and the state, we can make some qualitative observations to indicate that our system

is stable:

* The only component of the state that can be changed by the system itself is the

solution quality; the configuration can only be changed by the controller. Therefore,

the configuration component of the state does not change except at the direction of

the controller.

* The primary measure of system performance (solution quality) is monotonically non-

decreasing: while a configuration change could result in a massive increase in this

measure (which is desirable), the worst that could happen is that no further increases

would be produced.

From these observations, we conclude that the system is stable.

7.3.3 Optimality. Optimality is desired in a controller for the primary reason

that with an optimal control, the actions taken by the controller optimize the controller's

objectives, not just satisfy them. For a controller to be an optimal, two conditions must

be met:

1. There must be a scalar-valued function U which measures the performance of the

controller;

2. There must be an admissible control which optimizes U.
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The first condition is met by Equation 7.7, the objective function. The second condition is

met trivially; all control actions are admissible since the plant is completely controllable.

The evaluation process itself optimizes U using multi-criteria optimization techniques, thus

our control is optimal.

7.4 Computational Issues

Unfortunately, this is not an ideal world; it takes time to calculate our evaluation

factors, and the plant does not respond instantly to our control inputs. In a physical

system, continuous monitoring and control is frequently necessary to be able to control

the output. In our case, the output changes resulting from our control frequently lag

significantly behind the control actions themselves.

These realities force the controller to constrain the amount of interaction it has with

the system; it needs to intervene frequently enough to keep the system from going off the

preferred course, yet not so frequently that the system does not have time to respond to

the control actions.

What needs to be done is to set the monitoring time interval so that the system

has time to react before we try to evaluate the results. Looking at the inputs to the

performance evaluation factors, it is clear that these values only change when a new best

solution is found or when the system configuration changes. This sets an obvious minimum

interval for re-evaluation. There needs to be a maximum interval, however, so that the

controller can interrupt a system that is no longer producing any results.

When new algorithms are started, the sample interval needs to be temporarily length-

ened so that the algorithm has time to start. If we assume that the output changes within

k iterations of starting a new algorithm, the monitoring should be limited so that a re-

evaluation is not performed until k iterations of the slowest new algorithm in the current

configuration. This way, the system has time to settle into the new configuration before

the next evaluation.
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7.5 Summary

The control model developed in this chapter provides the methodology to direct the

progress of the distributed system, compensating for and correcting any configuration er-

rors introduced by the use of approximate models. Discrete multicriteria optimization is

used to balance the system configuration between conflicting objectives: system perfor-

mance, resource utilization and control stability. The design of the system provides much

of the stability and controllability needed by the controller. The resulting control model

is independent of any problem domain, yet still uses the algorithm models to direct the

distributed system to a configuration with the highest expected performance balanced with

reasonable resource utilization.
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VIII. Experimental Analysis

The overall goal of our experiments is to demonstrate a performance improvement when

using the static selection and dynamic control versus an arbitrary single algorithm sys-

tem. We divided this goal into objectives to demonstrate the performance of a particular

component of the system (or the entire system):

1. static selection alone;

2. dynamic control alone;

3. static selection and dynamic control together.

8.1 Experiment Setup

Our test environment utilizes a heterogenous network of Sun workstations (both

Sparc 20 and UltraSparc I) and Linux workstations (200 MHz Pentium Pro). We used

OVERMIND as the framework for our distributed system (see Appendix IV). The static

selection and dynamic control functionality was incorporated into a consumer task.

The experiments were conducted using 75 randomly generated Bayesian Networks.

The networks contain from 30 to 500 random variables, each having 2 or 3 possible states.

The connectivity between the random variables was kept moderate, with the number of

arcs typically ranging between twice and three times the number of random variables. The

conditional probability tables were generated with varying distributions, from extremely

flat (small variance between entries) through extremely spiked (most entries close to zero,

with one nearly 1.0).

8.2 Static Selection

We used this methodology to select from five different algorithms: a Genetic Algo-

rithm (GA), A* search with two different heuristics: best-first and shared-cost, a hybrid

stochastic search (HySS) and a Barrier Algorithm.

Figure 8.1 shows how the selected combination performed in comparison with the

other combinations for that sized network. We weighted the evaluation to favor perfor-
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Network Initial Time Interval (sec)

Size (RVs) 10 20 50 100 200 300 500

30 .75 .83 .67 .67 .67 .67 .67

50 .83 .83 .67 .75 .92 .67 .67

100 .25 .42 .58 .67 .67 .92 .92

200 .08 .25 .42 .67 .5.8 .83

300 0 0 .27 .55 .45 .58 .50

500 0 0 0 .57 .56 .78 .78

Figure 8.1 Success rates for algorithm selection.

mance (Moony = 100) while leaving the rest of the weights at 1.0; the numbers reflect

the success rate of the selection process. Our definition of success is when (1) the al-

gorithm(s) selected were contained in the combination that produced the best solution at

that time and (2) those algorithm(s) were the ones contributing the best solutions. Clearly,

in most of the cases, the selection process chose an algorithm combination that matched

the best-performing combination.

Since the goal of the static selection process is to select a configuration to get the

system off to a good start, picking the best performing combination is not essential. On

the other hand, the better the initial configuration performs, the easier it will be for the

dynamic controller.

Looking again at the results, notice the increase in the success rate as you move

from left to right. This is a result of the varied cycle times for the different algorithms.

This effect can also be noticed when moving from top to bottom. As the network size

increases, the cycle time for the algorithms increase; with the approximate models, it may

take several cycles for the models to accurately predict the algorithm's performance. What

is not immediately obvious is why the success rates fall off at the right edge of the table,

especially for the smaller networks. This result is caused by the "near-sighted" models.

Accuracy falls off as time increases, causing inaccurate predictions for the larger interval

times relative to the size of the problem.
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8.3 Dynamic Control

Our meta-level objective for the run-time control process is to keep the algorithms

running to make the most progress towards the optimal solution. Thus, one measure of

success could be how fast we obtain a particular solution quality, or possibly what solution

quality we obtain at a given time. Lacking any absolute objectives for either measure, we

use the best un-controlled run as our benchmark. We are successful if the progress of the

controlled system approaches or exceeds that of the best uncontrolled run.

Since performance was used to select the benchmark, our first test is to evaluate

the performance of our system with the weighting factors set to favor the performance

factors (convergence rate and probability of improvement). The results of this comparison

are shown in Figure 8.2. These runs were made on a network with 50 random variables

and a flat probability distribution. The weights for the convergence rate and improvement

factors are set to 100; all others were left at 1.0. The solid curve shows the performance of

the controlled system, and the dashed curve is the performance curve for the benchmark

run. The performance of the two systems is nearly identical; the only difference in the two

curves is due to the stochastic nature of the GA tasks involved.

Quantitatively, the objective for the controller is to move the state of the system (the

configuration of algorithms) into a region to maximize the objective function. Whether

this meets our performance objective is entirely dependent on the weighting factors sup-

plied, the actual performance of the algorithms and the problem domain. As an example,

Figure 8.3 demonstrates how the weighting factors affect output solution quality. This plot

compares the performance of three runs which differ only in the relative weights assigned

to the resource factors. By increasing the weight of the resource factors, more priority

is given to reducing the number of concurrent algorithms being used (see Figure 8.4), re-

sulting in a reduced output solution quality. The controller's objective is met: while the

solution quality is not as high as it would have been with unlimited resources, it still is as

high as the controller can push it within the constraints imposed upon it.
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8.4 Total System

As has been mentioned previously, the dynamic controller can take the system and

move it into an appropriate state no matter where the system starts out. However, if

the initial algorithm selection does its job properly and selects a high-performance set of

algorithms, the controller has a much easier job and the performance of the system is as

good or better than just starting out with an arbitrary algorithm set. Figure 8.5 shows

this type of behavior. If we purposely choose the worst performing algorithm to start with,

the system takes longer to reach a particular solution quality level. But when the selection

process chooses a good set to begin with, the system reaches the same solution quality level

faster.

8.5 Summary

Using our experimental setup, we performed four tests to demonstrate the system's

capabilities: initial selection success, non-degradation, user priority and a poor start test.

Our prototype system clearly demonstrated its abilities by successfully completing the four

experiments; but these tests also showed the potential of the system for future progress.
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IX. Conclusions

The focus of this research has been to model the process of managing a distributed system

of cooperating processes. We are particularly interested in those domains where finding

the optimal solution is either intractable or impossible. In these situations, algorithms

typically exist that can produce some form of sub-optimal solution, but, the problem of

choosing which one to use for a given situation is often difficult as well. In fact, the No

Free Lunch Theorems show that in the general case, this selection cannot be made without

some knowledge of the way problem characteristics affect an algorithm's performance.

In Chapter V we developed a method for capturing the essential information about

a problem domain and the algorithms to manipulate that domain. The resulting models

encapsulate this information in the form of general performance metrics useful in the

selection and evaluation of algorithms and algorithm combinations. The encapsulation

makes it possible for the controller to be developed independent of any problem domain,

yet still utilize the algorithm models to determine algorithm performance for the problem

domain being studied. Chapter VI develops a method for selecting the initial algorithm

configuration for the system based on the models' performance prediction. During run-

time, the algorithm models are used to evaluate the progress of the algorithms and make

configuration changes as indicated in an attempt to improve performance as presented in

Chapter VII.

The power of this approach is the use of approximate "near-sighted" models of the

algorithms. They are typically easy to compute, and may be effective in modeling the

algorithm's behavior in the near future. There does not seem to be a need to have extremely

accurate models, as the controller monitors and adjusts the system configuration as the

algorithm(s) proceed.

To demonstrate the capabilities of this approach, we applied it to uncertain inference

over Bayesian Networks. We characterized the problem domain, extracting the significant

features from the networks that affect the performance of the algorithms. Appendix B

shows the results of analyzing five different inference algorithms and incorporated them

into the distributed environment. The resulting system performed as expected: when
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priority was given to solution quality (instead of resource usage, etc.), the system produced

results comparable to the best individual algorithm. With the capability of the system

to incorporate other factors into the selection process, we also demonstrated the ability

of the controller to reach a reasonable compromise configuration between solution quality

and resource consumption.

9.1 Future Work

The impetus for this research came from the frequently asked question: "What tool

should I use for this job?" This research has proposed a simple method for making such

decisions in the face of several conflicting objectives, with some very promising results.

We have just scratched the surface of modeling this decision process; our results, while

promising, definitely leave some room for analysis and expansion. As with the human

decision making process, we are working with limited information; the more accurate the

knowledge we use, the better the results might be. Our use of simplistic algorithm models

gives us the capability to make quick decisions; adding more detail (accuracy) to the models

would improve the accuracy of controller's decisions. This would improve overall system

performance as well as reduce the unnecessary use of system resources.

Currently, our approach uses fixed constants in some of the factors to account for

variations in hardware configuration, system speed and so forth. The accuracy of the mod-

els could be enhanced by adding the capability to use reinforcement learning to determine

more appropriate values for these constants. Additionally, a hardware model could be

added to allow the system to better utilize a varied hardware base.

In Chapter VII, we discuss the different levels of control possible for this system, and

decided on the highest level for this work. In order for the controller to exert more precise

control over the system, it would need to use a lower level of control: at least down to

the process interaction level. This would require explicit management of the interaction

between processes, as well as some management of the processes themselves. This fine-

grained approach to system management has the potential for improving the performance

of the system considerably.

9-2



As an example of the extensibility of this methodology, it could be applied to other

problem domains: likely candidates are planning(8) and other intractable problems. With

the models as presented, the only issue involved is selection and modeling of the anytime

algorithms appropriate to the domain. The control method itself is unchanged, as it relies

only on the abstract algorithm model.

9.2 Contributions

The contributions of this research include the following:

" Development of a structural model for intelligent control of a cooperative distributed

process

" Development of a general structural model for cooperative distributed process inter-

action using anytime and anywhere algorithms

* Instantiation of the general model for uncertain inference using Bayesian Networks

" Analysis and modeling of inference algorithms and a characterization of Bayesian

Networks
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Appendix A. Barrier Method

This inference algorithm operates by processing the random variables in the Bayesian Net-

work one at a time; effectively eliminating that variable by subsuming itself and its children

into a meta-variable. This consolidates each disconnected component of the network into

a single meta-variable; the solution can then be determined by choosing the highest prob-

ability state for each meta-variable.

A.1 Definitions

neighbor Random variable A is a neighbor of random variable B if one of the following

conditions hold:

* random variable A is a child of random variable B (i.e. it is conditionally

dependent on random variable B)

" random variable A is a parent of random variable B (i.e. random variable B is

conditionally dependent on random variable A)

" random variable A is a parent of one of random variable B's children

A.2 Algorithm

while(unprocessed RVs left)

{

choose RV to process

determine neighborhood of RV

determine minimal set of

variables and meta-variables that reference RV

subsume this set into RV

The algorithm itself is straightforward. The order in which the random variables

are processed has no effect on the outcome; it can, however, have a significant effect

on performance. It is also possible to predict the performance of this algorithm without
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actually generating the solution: simply remove the subsumption step in the algorithm and

track the size and dimensionality of the neighborhoods for each iteration. The complexity

of this step is O(n log(n)).

The neighborhood of the target random variable is determined by starting with the

set of neighbors as defined above, then removing any variables that have already been

processed.

The set of variables that reference the target random variable consists of any meta-

variable that has subsumed the target variable or is dependent on the target variable, as well

as any random variable with the target variable in its conditional tail. This set initially

contains its children in the original network. As the random variables are processed or

subsumed into meta-variables, the outermost enclosing meta-variable containing the child

is used instead.

Creating the meta-variables through the process of subsuming is what gives this

algorithm its unique behavior. Subsuming is similar to clustering in that it combines several

random variables into a single entity for the purpose of simplifying the Bayesian Network,

but in the process of combining the variables together, it also reduces the dimensionality

of the problem by eliminating the target random variable from the resulting conditional

tables.

for(all combination of unprocessed neighbor variable values)

{

for(all states of RV)

determine joint conditional probability of RV and all children

save best value and state into meta-variable

}

This seemingly simple process reduces the target random variable's dimensionality

to zero - a single state of the random variable is saved in the meta-variable for each

combination of the neighbor variables. The probability value stored is the probability of

the target random variable combined with the probabilities of its children for the given

combination of neighbor variable states.
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In terms of the entire network, we have replaced the portion of the joint probability

equation involving the target random variable and its children with a new term that does

not depend on the target variable. Consider a network with the target random variable A,

its parents 7r(A), its children C, through Cn and their parents w(CI) through 7w(C ) (not

including A). Processing A would replace this part of the joint probability equation:

P( A{r( A ))P( Cl JA, T( 6j)) . .. P (C, CIA, 7r( Cn) )

with the equivalent part:

-y(A', C1,..., C.1r (A), C 1 ,. .. , C., 7r(CI),. .. , 7r(C.)) =

P (A'J7r ( A )) P(C CI1A', 7r ( Cl)) . .. P (CCnlA', 7r (Cn ) )

The notation A' is used to indicate that the variable has been processed and is zero-

dimensional. This now requires that all the random variables contained in the meta-

variable be used as a single unit. The resulting -yo term is not a true conditional probability

because of the extended set of dependencies, but it reflects the maximum value of the

target random variable combined with its children. The underlying conditional probability

expressions depend on the neighbors of the target random variable, thus the use of the

conditional notation. This term represents the value of the meta-variable containing the

random variable A and its children and is used whenever one of these random variables is

needed. With the random variable A eliminated, the dimensionality of the meta-variable

is the combined dimensionality of the children of A; this is less than the dimensionality of

the original set of conditional probability terms.

Extending the above scenario, let D be a random variable which is a parent of C1

(D has no parents or other children). Processing D would involve subsuming its child C1;

but it has already been subsumed, so we use the -y term in its place;

P( D)y(A p, C1, .-.. , Ch(A), 3,..., C., 7r(C1),..., 7r(Cn))
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is replaced by

-y(A', D', C1,..., CnI ir(A),C1,. . . ,C 7r(C 1),..., 7r(Cn)) =

P( D')-,( A', C1,..., C,,17( A), C1,..., C., 7r( CI),.. ., r( Cn ))

Notice that the new meta-variable contains not only D and its child C, but also A and the

rest of its children, but the dimensionality of the new meta-variable is unchanged because

the new variable D was eliminated in the subsumption; this results in an overall reduction

in dimensionality since the original term for random variable D was subsumed into the

new meta-variable.

As the algorithm proceeds through the network, each random variable is processed;

its children (or their containing meta-variables) are subsumed and the dimensionality is

reduced by one until each disconnected subnet within the Bayesian Network has been

subsumed into one meta-variable. With all the variables processed, each meta-variable has

a dimensionality of zero; it contains the optimal solution to its part of the network. The

overall optimal solution is then determined by assembling the component solutions.
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Appendix B. Algorithm Models

This appendix describes the development of the models for the algorithms used in our

experiments. The development follows the standard three-phase process: analysis, design

and then implementation. For these models, the analysis is performed as described in

Chapter V, determining the probability of improvement (Pimp) and level of improvement

(Eimp). The design phase applies the results of the analysis to determine the six domain-

independent factors required for evaluating the progress potential of the algorithms:

1. Time Complexity T (static and dynamic) The amount of time in seconds

that this algorithm will take to find the optimal solution. If the algorithm is an

approximate algorithm, it is the number of seconds to complete one iteration of the

process.

2. Space Complexity S (static and dynamic) The amount of space in machine

words required by the algorithm during the entire course of the solution process.

3. Resource Cost 1? (static and dynamic) An indicator of the cost in system

resources to run this algorithm (CPUs, special peripheral equipment, etc.).

4. Restart Cost g (dynamic) The number of seconds spent in starting this algorithm.

5. Expected Magnitude C(x, t, At) (static and dynamic) The solution quality level

the algorithm is expected to produce given a starting level and a time interval. This

factor is derived from the Eimp analysis.

6. Probability of Improvement 1(x, t, At) (dynamic) The likelihood that the algo-

rithm will produce a solution better than the provided solution quality level during

the specified time interval. This factor is derived from the Pimp analysis.

The above list also indicates where each factor is used: static refers to the initial selection of

algorithms and dynamic is the run-time control phase. It is in this phase of model develop-

ment where problem-domain specific information is used; this is where the characteristics

of the problem instance can be used to affect the algorithm's performance potential.
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The final step is implementing the models. We implemented the basic algorithm

model as the C++ virtual base class shown in Figure B.1. Each specific algorithm inherits

this base class and overloads the methods to specify that algorithm's behavior.

B.1 Design Considerations

While the model presented is domain-independent by design, it should also be plat-

form independent in implementation. The OVERMIND system encourages the use of

networks of possibly dissimilar equipment; the time and space complexity factors should

be specified such that a simple constant can be provided to adapt the factor to different

hardware platforms. The base class shown provides this capability through the scaling

factors available for the first four factors.

Also note that the emphasis in developing the models is approximation; we need

models which can be evaluated quickly. The inevitable error from reality is compensated

for by the continual monitoring and control activities.

B.2 Genetic Algorithms (GAs)

The GAs used in our experiments were simple GAs based on the Genesis(12) frame-

work utilizing both mutation and crossover. We represented a solution (a complete as-

signment to the underlying Bayesian Network) as an array of integers; each element of the

array was converted to a 3-bit binary value for the GA to work with.

B.2.1 Time Complexity. Since the GA is an approximate algorithm, the time

complexity is for one iteration; in GA terminology, a generation. GAs work on a population

of solutions (or genes); each member of the population is treated as a unit for the mutation

and crossover operations, but the performance evaluation for each member is O(n). This

gives us an overall complexity of 0(pn). Incorporating our scaling factor, we get our final

complexity for one generation as:

T = CtimePN (B.1)
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class Algorithm

{
public:

double timeScale;
double spaceScale;
double resourceScale;
double restartScale;

Algorithm(void);
Algorithm(double time, double space, double resource, double restart);

// info member functions
virtual char *name(BNStats &stats);

virtual char *command(BNStats &stats);
virtual char *args(BNStats &stats);

I/ the evaluation methods
virtual double timeComplexity(BNStats &stats);
virtual double spaceComplexity(BNStats &stats);

virtual double magnitudeImprovement(BNStats &stats,
double total-time, double interval,

double start);
virtual double probabilityImprovement(BNStats &stats, double currvalue,

double total-time, double interval);
virtual double resourceCost(BNStats &stats);

virtual double restartCost(BNStats &stats);
virtual int numberSteps(BNStats &stats, double interval);

Figure B.1 Base class for the algorithm models
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where P is the population size and N is the number of random variables in the network.

B. 2.2 Space Complexity. The space complexity of a GA is limited to that required

to store the members of the population, and as such is also O(pn), making our space

complexity model

S = CspacePN (B.2)

B.2.3 Resource Cost. We are using the number of CPUs required as our resource

cost. For this simple GA, only one CPU is needed:

7Z = Cresource (B.3)

B.2.-4 Reconfiguration Cost. The start-up activities for the GA consist of loading

the Bayesian Network and generating the initial population; since both of these are O(n)

processes, the restart cost is

g = CrestartN (B.4)

B.2.5 Expected Magnitude. The GA improves its solutions by crossover and

mutation; both processes are random in nature and currently difficult to model exactly.

For the sake of simplicity, we assume that the best member of the population is the one

that drives the increase for the population as a whole. While not always true, it does

provide a consistent starting point for determining the expected improvement for the entire

population.

During a crossover operation, a portion of the gene is exchanged with the same

portion of another gene; this affects the quality of the solution through the changed as-

signments of the affected random variables. This change could be an improvement or a

degradation for each gene involved; but between the two genes at least one of them should

show an improvement. If we assume that at least one of the random variables in the

swapped portion improves, the expected magnitude of that improvement would be on the

order of Pmax/Pavg where P,a, is the largest entry in any of the conditional probability

tables, and Pavg is the average conditional probability value in the previous solution. This
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function C(x, t, ti)
let s = number of generations in interval t
let C = x.s

for(s generations)
C = C P-mPag

return C

Figure B.2 Algorithm for calculating expected solution value at time t + ti

process repeats every generation, starting with the value of the current solutions, produc-

ing the expected result. The expected number of generations s is derived from the time

complexity factor. The algorithm for this process is in Figure B.2.

B.2.6 Probability of Improvement. We define the probability of improvement

as the likelihood that the algorithm will produce a solution with a quality value larger

than some reference value (usually the current best quality value) during the time interval

specified. The GA will process a number of generations during the interval, and it only

takes one of them producing an improvement to cause an increase over the interval; the

likelihood of this happening is the converse of the likelihood that none of the generations

produce an improvement. If we define the likelihood of one generation not producing

any improvement as the likelihood that the the value of the new assignment to a random

variable will be less than the old assignment, we end up with

I = 1 - [P(P(ri17r(ri)) < P(r17r(r)))]s (B.5)

where ri is the new assignment, r is the old assignment and s is the number of generations

in the interval.

B.3 Hybrid Stochastic Search (HySS)

The functionality of this algorithm was described earlier. As with the GA, the

solution is represented by an integer vector corresponding to a complete assignment to all

random variables in the network.
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B.3.1 Time Complexity. HySS also operates on a population, and each member

of the population is evaluated by an O(n) process; but HySS also uses a table to accumulate

its results and prevent duplicate solutions. Adding to this table is an O(n 2 ) operation.

Accounting for our scaling factor gives us

T = CtimePN2  (B.6)

where P is the population size and N is the number of random variables in the network.

B.3.2 Space Complexity. HySS requires O(pn) space to store the population,

and O(pn) space to store the table:

S = CspaceP2 N 2  (B.7)

B.3.3 Resource Cost. We are using the number of CPUs required as our resource

cost. For this algorithm, only one CPU is needed:

R? = Cresource (B.8)

B.3.4 Reconfiguration Cost. The start-up activities for HySS consist of loading

the Bayesian Network and generating the initial population; since both of these are O(n)

processes, the restart cost is

9 CrestartN (B.9)

B.3.5 Expected Magnitude. The HySS algorithm is similar to a GA with one

major difference: each member of the population is manipulated independent of all others.

The member is scanned to determine which random variable provides the largest amount

of increase when changed; even though only one random variable is changed, we are guar-

anteed that it will increase. This difference allows us to use the same method to determine

the expected improvement shown in Figure B.2.
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B.3.6 Probability of Improvement. With all the members of the population being

manipulated independently, the likelihood that at least one will improve is the converse of

the likelihood that none of them will improve. Accounting for the number of generations

in the specified interval gives us

.E = 1 - [[P(P(rilw(ri)) < P(rj7w(r)))]N]s (B.10)

where ri is the new assignment, r is the old assignment and s is the number of generations

in the interval.

B.4 Heuristic Search Methods

We used two types of heuristic search for our experiments, one using a Shared Cost

heuristic(3, 4) and the other using a simple cost-so-far (best first) heuristic. Both types

of search use the same framework, so they have the same complexity and cost factors; the

only difference is in the performance factors.

B.4.1 Time Complexity. The time requirements for any time of heuristic search

is combinatoric: in the worst case, all possible solutions need to be evaluated before finding

the optimal answer. Since this is an exact algorithm, this factor reflects the entire solution

process:

T = CtimedN (B.11)

where d is the average number of states for the random variables in the network.

B.4.2 Space Complexity. The primary usage of space in the search process is

in maintaining the open queue - those partial solutions which have been generated but

not processed. Our framework expands partial solutions one random variable at a time,

so (worst case) it is possible for the open queue to contain most of the possible solutions.

The expansion process puts d new partial solutions on the queue for each one it removes;

this sets the space factor to

S = Cspace(d - 1 )N (B.12)
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B.4.3 Resource Cost. We are using the number of CPUs required as our resource

cost. For this search framework, only one CPU is needed:

7Z = Cresource (B.13)

B.4 Reconfigure Cost. The start-up cost for the search is loading the Bayesian

Network and performing any preprocessing for the heuristic. For these heuristics, the worst

case is O(n):

g = CrestartN (B.14)

B.4.5 A* Shared Cost.

B.4.5.1 Expected Magnitude. The shared-cost heuristic condenses the val-

ues of the unassigned random variables into a small number of table entries; this has the

effect of smoothing out many of the features in the conditional probability tables. This

creates a breadth-first type effect in the expansion pattern. Since our 'improvement' comes

from replacing an arbitrary assignment with our own assignment, we can assume an im-

provement of Pmax/Pavg each time a new 'level' is reached (a new variable is replaced) in

the expansion, all we have to do is estimate the rate at which new levels are reached.

With a breadth-first expansion, new levels are only reached when most (if not all)

partial solutions at the previous level have been processed; the number of levels reached

can be determined by taking the logarithm of the number of nodes expanded. The base of

the logarithm (d) is the average number of states for the random variables. The expected

value at the end of the interval is then

C = (Pm. /Pmjnj09d (
,

)  (B.15)

where s is the number of iterations in the time interval.

B.4.5.2 Probability of Improvement. Within the specified interval, we could

have the opportunity to traverse multiple levels. In order to have an overall increase in
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solution quality at the end of the interval, all traversals need to increase1 :

_T = P(Pmax > Pavg)lo
g

d(s) (B.16)

B.4.6 Best First.

B.4.6.1 Expected Magnitude. For the best first heuristic, we also assume

an increase of Pmax/Pavg each time a new level is reached; but this heuristic is much more

sensitive to the features in the conditional probability tables. The determination of how

often to advance to a new level is related to the extremeness(27) of the distribution in the

conditional probability tables:

Case 1 if (Pmax)N < (Pmin)N-1, the search progresses in a breadth-first fashion since the

best entries at each level are not good enough to beat anything else at its level to

progress more rapidly: 1 = lOgd(s).

Case 2 if the network is extreme, then the search is depth first, but it is guaranteed that

the optimal solution is at the bottom of the first descent. In this case, each expansion

descends another level: I = s.

Case 3 in all other cases, we scale the base of the logarithm in order to achieve a middle

ground between the breadth- and depth-first descent rates:

scale - ax - Pavg

1 = lOgdxscale (S)

Our final expected magnitude is therefore

C = (Pmax/Pmin)l  
(B.17)

'this is not necessarily true, but without knowledge of the relative magnitudes of the increases and
decreases, there is no way of determining the likelihood of an overall increase
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B.4.6.2 Probability of Improvement. Using the same arguments as for the

shared-cost heuristic, we only achieve an overall increase if we get an increase at all levels:

I = P(Pma. > Pmin) l  (B.18)

B.5 Barrier Computation

We included the Barrier Computation algorithm in our experiments even though it

is not an anytime algorithm for two main reasons. First, it is an interesting algorithm

with performance characteristics that are clearly defined. We also wanted to demonstrate

the flexibility of the control model in being able to accommodate both anytime and non-

anytime algorithms in the same collection.

B. 5.1 Time Complexity. The time complexity of this algorithm depends mainly

on the maximum size of the neighborhood of the random variables in the Bayesian Network.

The neighborhood of a random variable is determined by finding all the other variables

connected to it after the network has been triangulated(26). Each iteration of the algorithm

processes the neighborhood of one random variable; this action modifies the neighborhood

size of the neighboring random variables, typically resulting in a neighborhood size of dh/2

where h is the largest neighborhood size prior to the start of the algorithm. This results

in a time complexity of

T = CtjmeNdh/2  (B.19)

B. 5.2 Space Complexity. The space complexity is driven by the neighborhood

tables that must be stored, and hence is the same as the time complexity:

S = CspaceNdh/2  (B.20)

B.5.3 Resource Cost. We are using the number of CPUs required as our resource

cost. For this algorithm, only one CPU is needed:

7Z = CresoUrce (B.21)
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B. 5. Reconfiguration Cost. The start-up activities for this algorithm consist

of loading the Bayesian Network and chording the graph to determine the initial neigh-

borhoods. Loading the network is 0(n), but chording the network is 0(np2 ) where p is

the maximum number of parents for all random variables in the network. This makes our

restart factor:

G =CreconfigNP2  (B.22)

B.5.5 Expected Magnitude. Calculating the expected magnitude for this al-

gorithm poses a challenge because it only produces one answer - the optimal solution!

Looking at the usage of this factor, however, we can still provide a usable result even if we

cannot estimate the value of the optimal solution.

First, if the estimated solution time (t,) is within the specified interval, we simply

return 1.0: this guarantees that the algorithm will be selected for use.

On the other hand, if we know that if the interval provided does not contain the time

we estimated for completing the solution, we could simply return 0.0. This, however will

most likely prevent this algorithm from being selected for anything but extremely small

problems. What we need to do is provide a value that makes the algorithm competitive

for medium size problems without making it appealing for problems that are too large for

it to solve in reasonable time. One way to accomplish this would be to simply return the

value at the start of the interval - this would not indicate exceptional performance, but

would not immediately disqualify the algorithm:

C(x,t, At) = 1.0 if (t ± At) S (B.23)
s otherwise

B.5.6 Probability of Improvement. For this algorithm (and any non-anytime

algorithm), the only time we can expect to see an improvement is when the algorithm

finishes. This is not too useful for selection purposes, as it almost guarantees that the

algorithm will not be selected unless the solution time falls within the initial interval. In

order to alleviate this problem, we can distribute the probability of finding a solution over

the entire estimated solution time t, instead of leaving it as a spike at the end of the
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interval. This allows us to use the probability of improvement as an indication of how

close to the final solution we are:

(x, t, At) = (t+ At)/t, if (t + At) < t(
I~xt, A) =(B.24)

1.0 otherwise
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